Functional equation for distribution function
up vote
2
down vote
favorite
I have next functional equation for some distribution:
$$overline F_xi^2(T) = overline F_xi(2T) forall T>0$$
If suggest, that it differentiable, we can do something like this:
$$2overline F_xi(T) cdot overline F'_xi(T) = 2overline F'_xi(2T)$$
$$overline F_xi(T) cdot overline F'_xi(T) = overline F'_xi(2T)$$
But how to solve this differential functional equation?
where $$overline F_xi = 1 - F_xi = P(xi > T)$$
Also, I have $mathbb Exi=1.$
differential-equations probability-theory probability-distributions
add a comment |
up vote
2
down vote
favorite
I have next functional equation for some distribution:
$$overline F_xi^2(T) = overline F_xi(2T) forall T>0$$
If suggest, that it differentiable, we can do something like this:
$$2overline F_xi(T) cdot overline F'_xi(T) = 2overline F'_xi(2T)$$
$$overline F_xi(T) cdot overline F'_xi(T) = overline F'_xi(2T)$$
But how to solve this differential functional equation?
where $$overline F_xi = 1 - F_xi = P(xi > T)$$
Also, I have $mathbb Exi=1.$
differential-equations probability-theory probability-distributions
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I have next functional equation for some distribution:
$$overline F_xi^2(T) = overline F_xi(2T) forall T>0$$
If suggest, that it differentiable, we can do something like this:
$$2overline F_xi(T) cdot overline F'_xi(T) = 2overline F'_xi(2T)$$
$$overline F_xi(T) cdot overline F'_xi(T) = overline F'_xi(2T)$$
But how to solve this differential functional equation?
where $$overline F_xi = 1 - F_xi = P(xi > T)$$
Also, I have $mathbb Exi=1.$
differential-equations probability-theory probability-distributions
I have next functional equation for some distribution:
$$overline F_xi^2(T) = overline F_xi(2T) forall T>0$$
If suggest, that it differentiable, we can do something like this:
$$2overline F_xi(T) cdot overline F'_xi(T) = 2overline F'_xi(2T)$$
$$overline F_xi(T) cdot overline F'_xi(T) = overline F'_xi(2T)$$
But how to solve this differential functional equation?
where $$overline F_xi = 1 - F_xi = P(xi > T)$$
Also, I have $mathbb Exi=1.$
differential-equations probability-theory probability-distributions
differential-equations probability-theory probability-distributions
edited Nov 26 at 18:24
asked Nov 26 at 13:13
Lisa
285
285
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
For brevity, put $f=bar F_{xi}$. Since $f$ is decreasing, if $f(x)=0$, a simple proof by induction shows $f(2^{-n}x)=0$ and therefore $fle 0$ everywhere, which contradicts $Bbb E[xi]=1$. Hence, $f>0$ and we can define $g(t)=ln f(t)$ so the hypothesis yields $2g(t)=g(2t)$. If we assume $f$ is analytic on $Bbb R$, $g'(t)=g'(2t)$ and induction shows $g^{(n)}(t)=2^{n-1}g^{(n)}(2t)Rightarrow g^{(n)}(0)=0$ for $n>1$ so the Taylor Series of $g$ reduces to $g(t)=a_0+a_1t$. Imposing the condition that $2a_0+2a_1t=2g(t)=g(2t)=a_0+2a_1t$, and equating coefficients forces $a_0=0$. The definition of $g$ shows $f(t)=e^{g(t)}=e^{at}$ so that $xisim text{Exp}(-a)$, but $Bbb E[xi]=-frac 1a=1$, so $a=-1$.
add a comment |
up vote
-2
down vote
Hint: divide both sides by F(2T)
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014317%2ffunctional-equation-for-distribution-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
For brevity, put $f=bar F_{xi}$. Since $f$ is decreasing, if $f(x)=0$, a simple proof by induction shows $f(2^{-n}x)=0$ and therefore $fle 0$ everywhere, which contradicts $Bbb E[xi]=1$. Hence, $f>0$ and we can define $g(t)=ln f(t)$ so the hypothesis yields $2g(t)=g(2t)$. If we assume $f$ is analytic on $Bbb R$, $g'(t)=g'(2t)$ and induction shows $g^{(n)}(t)=2^{n-1}g^{(n)}(2t)Rightarrow g^{(n)}(0)=0$ for $n>1$ so the Taylor Series of $g$ reduces to $g(t)=a_0+a_1t$. Imposing the condition that $2a_0+2a_1t=2g(t)=g(2t)=a_0+2a_1t$, and equating coefficients forces $a_0=0$. The definition of $g$ shows $f(t)=e^{g(t)}=e^{at}$ so that $xisim text{Exp}(-a)$, but $Bbb E[xi]=-frac 1a=1$, so $a=-1$.
add a comment |
up vote
2
down vote
accepted
For brevity, put $f=bar F_{xi}$. Since $f$ is decreasing, if $f(x)=0$, a simple proof by induction shows $f(2^{-n}x)=0$ and therefore $fle 0$ everywhere, which contradicts $Bbb E[xi]=1$. Hence, $f>0$ and we can define $g(t)=ln f(t)$ so the hypothesis yields $2g(t)=g(2t)$. If we assume $f$ is analytic on $Bbb R$, $g'(t)=g'(2t)$ and induction shows $g^{(n)}(t)=2^{n-1}g^{(n)}(2t)Rightarrow g^{(n)}(0)=0$ for $n>1$ so the Taylor Series of $g$ reduces to $g(t)=a_0+a_1t$. Imposing the condition that $2a_0+2a_1t=2g(t)=g(2t)=a_0+2a_1t$, and equating coefficients forces $a_0=0$. The definition of $g$ shows $f(t)=e^{g(t)}=e^{at}$ so that $xisim text{Exp}(-a)$, but $Bbb E[xi]=-frac 1a=1$, so $a=-1$.
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
For brevity, put $f=bar F_{xi}$. Since $f$ is decreasing, if $f(x)=0$, a simple proof by induction shows $f(2^{-n}x)=0$ and therefore $fle 0$ everywhere, which contradicts $Bbb E[xi]=1$. Hence, $f>0$ and we can define $g(t)=ln f(t)$ so the hypothesis yields $2g(t)=g(2t)$. If we assume $f$ is analytic on $Bbb R$, $g'(t)=g'(2t)$ and induction shows $g^{(n)}(t)=2^{n-1}g^{(n)}(2t)Rightarrow g^{(n)}(0)=0$ for $n>1$ so the Taylor Series of $g$ reduces to $g(t)=a_0+a_1t$. Imposing the condition that $2a_0+2a_1t=2g(t)=g(2t)=a_0+2a_1t$, and equating coefficients forces $a_0=0$. The definition of $g$ shows $f(t)=e^{g(t)}=e^{at}$ so that $xisim text{Exp}(-a)$, but $Bbb E[xi]=-frac 1a=1$, so $a=-1$.
For brevity, put $f=bar F_{xi}$. Since $f$ is decreasing, if $f(x)=0$, a simple proof by induction shows $f(2^{-n}x)=0$ and therefore $fle 0$ everywhere, which contradicts $Bbb E[xi]=1$. Hence, $f>0$ and we can define $g(t)=ln f(t)$ so the hypothesis yields $2g(t)=g(2t)$. If we assume $f$ is analytic on $Bbb R$, $g'(t)=g'(2t)$ and induction shows $g^{(n)}(t)=2^{n-1}g^{(n)}(2t)Rightarrow g^{(n)}(0)=0$ for $n>1$ so the Taylor Series of $g$ reduces to $g(t)=a_0+a_1t$. Imposing the condition that $2a_0+2a_1t=2g(t)=g(2t)=a_0+2a_1t$, and equating coefficients forces $a_0=0$. The definition of $g$ shows $f(t)=e^{g(t)}=e^{at}$ so that $xisim text{Exp}(-a)$, but $Bbb E[xi]=-frac 1a=1$, so $a=-1$.
answered Nov 26 at 22:30
Guacho Perez
3,61211031
3,61211031
add a comment |
add a comment |
up vote
-2
down vote
Hint: divide both sides by F(2T)
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
add a comment |
up vote
-2
down vote
Hint: divide both sides by F(2T)
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
add a comment |
up vote
-2
down vote
up vote
-2
down vote
Hint: divide both sides by F(2T)
Hint: divide both sides by F(2T)
answered Nov 26 at 15:48
user619894
1
1
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
add a comment |
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
you must try to provide a bit more detailed Hint, or solution.
– idea
Nov 26 at 18:26
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014317%2ffunctional-equation-for-distribution-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown