Peptidbindung




Eine Peptidbindung ist eine amidartige Bindung zwischen der Carboxygruppe einer Aminosäure und der Aminogruppe des α-Kohlenstoffatoms (α-C-Atom) einer zweiten Aminosäure.


Formal können beispielsweise zwei Moleküle der proteinogenen Aminosäure Alanin in einer Kondensationsreaktion unter Wasserabspaltung zu dem Dipeptid Alanyl-Alanin reagieren (kondensieren):


Bildung einer Peptidbindung


Da die Aminogruppe zu schwach nukleophil ist, um direkt mit der Carboxygruppe zu reagieren, beziehungsweise auch protoniert als –NH3(+) vorliegen kann, liegt das Gleichgewicht unter Normbedingungen auf der linken Seite. Die chemische Reaktion ist endergon.


Sowohl bei der Peptidsynthese im Labor als auch bei der biologischen Synthese von Peptiden und Proteinen müssen die reaktiven Gruppen zuerst aktiviert werden. Dies geschieht in biologischen Systemen zumeist durch Enzyme. Bei der Proteinbiosynthese in einer Zelle wird diese Reaktion während der Translation von den Ribosomen katalysiert. Daneben kommen bei manchen Organismen zusätzlich auch nichtribosomale Peptidsynthetasen (NRPS) als Enzyme vor, die eine nichtribosomale Peptidsynthese ermöglichen.




Drei blau markierte Peptidbindungen in einem Tetrapeptid (Ala-Ser-Gly-Leu)


Durch mehrfache Kondensation können weitere Aminosäuren (AS) per Peptidbindung verknüpft werden. So entstehen aus Dipeptiden (2 AS) dann Tripeptide (3), Tetrapeptide (4), Pentapeptide (5), Hexapeptide (6), Heptapeptide (7), Oktapeptide (8), Nonapeptide (9), etc., wobei solche Peptide aus wenigen Aminosäuren, Oligopeptide genannt, von noch größeren Peptiden aus vielen Aminosäuren, Polypeptide genannt, unterschieden werden. Die kettenförmig aus zahlreichen Aminosäuren aufgebauten Polypeptide gehören zu den Makromolekülen.


Polypeptidketten aus verschiedenen Aminosäuren bilden das primäre Strukturelement von Proteinen und werden durch ihre Aminosäuresequenz charakterisiert. Zu Primär-, Sekundär- und Tertiärstrukturen von Peptiden und Proteinen siehe Proteinstruktur.





Mesomere Grenzstrukturen einer trans-Peptidbindung. Wenn das Proton am positiv geladenen Stickstoffatom zum negativ geladenen Sauerstoffatom gewandert ist, liegt eine Amid-Iminol-Tautomerie vor.


Die Kristallstrukturanalysen von Aminosäuren und Dipeptiden zeigen, dass die Amid-Gruppe planar ist, alle am Aufbau beteiligten Atome liegen also in einer Ebene. Der Diederwinkel (HNCO) liegt bei 180° und die Atome können wegen Mesomeriestabilisierung nicht gegeneinander verdreht werden – die Peptidbindung ist dadurch nur begrenzt rotationsflexibel. Diese eingeschränkte Drehbarkeit ist in einem Ramachandran-Plot oder einem Janin-Plot darstellbar.





Cyclische Dipeptide (2,5-Diketopiperazine) aus Glycin und L-Alanin (links) sowie aus zwei L-Prolin-Molekülen (rechts, Cyclodi-L-prolyl). Die cis-Peptidbindungen sind blau markiert.


In den nativen Proteinen liegen vorwiegend trans-Peptidbindungen vor, cis-Peptidbindungen finden sich vor allem in cyclischen Dipeptiden (Diketopiperazine) und cyclischen Tripeptiden (Beispiel: Cyclotriprolyl).[1] Der Grund für das häufigere Auftreten von trans-Peptidbindungen sind die sterischen Hinderungen zwischen den Gruppen am α-C-Atom bei cis-Peptidbindungen, die bei der trans-Konfiguration nicht auftreten.[2]





Bindungswinkel (links) und Bindungslängen (rechts) einer typischen trans-Peptidbindung[3]


Die Bindungslängen sind zwischen Stickstoff und Carbonyl-Kohlenstoff 133 pm, zwischen Stickstoff und α-C-Atom 146 pm, zwischen Carbonyl-Kohlenstoff und α-C-Atom 151 pm und zwischen Carbonyl-Kohlenstoff und Sauerstoff 124 pm.[3] Die geringere Länge der C-N-Bindung in der Amidbindung im Vergleich zur normalen C-N-Bindung weist darauf hin, dass sie Doppelbindungscharakter besitzt; diese Art der chemischen Bindung wird auch partielle Doppelbindung genannt. Diese Besonderheit findet ihre Erklärung in der Amid-Iminol-Tautomerie der Peptidbindung.



Peptide und Amide |




Drei Amide mit jeweils blau markierter Amidbindung: Dimethylformamid (DMF, links), Acetamid (Mitte) und Nicotinamid (rechts)


Durch die Reaktion der Carboxygruppe einer Aminosäure und der Aminogruppe einer zweiten Aminosäure bildet sich unter Wasserabspaltung eine Peptidbindung. Jede Peptidbindung ist auch eine Amidbindung.


Voraussetzung für die Bildung einer Peptidbindung ist die Kondensationsreaktion der endständigen Carboxygruppe am C1-Atom mit der Aminogruppe am α-C-Atom einer zweiten Aminosäure. Jede andere Kondensation zwischen Carboxygruppe und Aminogruppe führt auch zu einer Amidbindung, die aber keine Peptidbindung ist.


Werden Peptide mittels Peptidbindungen verlängert, so reagieren die endständigen Carboxy- oder Aminogruppen am α-C-Atom mit weiteren Aminosäuren.



Einzelnachweise |




  1. Hans-Dieter Jakubke, Hans Jeschkeit: Aminosäuren, Peptide, Proteine. Verlag Chemie, Weinheim 1982, ISBN 3-527-25892-2.


  2. Jeremy M. Berg, Lubert Stryer, John L. Tymoczko: Stryer Biochemie. Springer-Verlag, Berlin, Heidelberg 2015, ISBN 978-3-8274-2989-6, S. 37 (eingeschränkte Vorschau in der Google-Buchsuche). 


  3. ab Hans-Dieter Jakubke, Hans Jeschkeit: Aminosäuren, Peptide, Proteine. Verlag Chemie, Weinheim 1982, ISBN 3-527-25892-2, S. 96–97.









Popular posts from this blog

To store a contact into the json file from server.js file using a class in NodeJS

Redirect URL with Chrome Remote Debugging Android Devices

Dieringhausen