Solving equations depending on $z$
up vote
0
down vote
favorite
For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$
$a+b+c=57$
$a^2+b^2−c^2=z$
$z·c=2017$
I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?
systems-of-equations diophantine-equations quadratics
add a comment |
up vote
0
down vote
favorite
For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$
$a+b+c=57$
$a^2+b^2−c^2=z$
$z·c=2017$
I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?
systems-of-equations diophantine-equations quadratics
1
Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08
$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23
"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30
But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$
$a+b+c=57$
$a^2+b^2−c^2=z$
$z·c=2017$
I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?
systems-of-equations diophantine-equations quadratics
For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$
$a+b+c=57$
$a^2+b^2−c^2=z$
$z·c=2017$
I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?
systems-of-equations diophantine-equations quadratics
systems-of-equations diophantine-equations quadratics
edited Nov 23 at 12:01
Harry Peter
5,43111439
5,43111439
asked Sep 13 at 14:05
calculatormathematical
389
389
1
Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08
$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23
"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30
But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57
add a comment |
1
Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08
$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23
"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30
But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57
1
1
Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08
Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08
$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23
$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23
"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30
"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30
But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57
But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
I have found a solution for my problem.
There are no numbers that fulfill the equation.
So (a,b,c) ∈ ℕ
$z*c=2017$
2017 is a Prime number. If
$z ≠ 1 ⋁ 2017$
then $c$ will logically be an odd number,
because else if z is not 1 or 2017 we'll have:
$2017/z = c$ (≠ even)
So $z$ has to be definitely 1 or 2017.
So we have case one: c = 1 if z is 2017
and case two: c = 2017 if z is 1.
Case one:
$(c=1;z=2017)$
1.) $a+b-1 = 57$
2.) $a^2 +b^2 -c^2= 2017$
If we divide 2.) by 1.)
we get:
1.) $a + b + 1 = 57 => a+b = 56$
$a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$
2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$
This makes no sense... ↯
Case two:
$(c=2017;z=1)$
1.) $a+b +2017 = 57$
2.) $a^2 + b^2 - 2017^2 = 1$
We end up with:
$(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$
I'm not 100% sure but i guess i'm right.
If not, pls comment.
Thx.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
I have found a solution for my problem.
There are no numbers that fulfill the equation.
So (a,b,c) ∈ ℕ
$z*c=2017$
2017 is a Prime number. If
$z ≠ 1 ⋁ 2017$
then $c$ will logically be an odd number,
because else if z is not 1 or 2017 we'll have:
$2017/z = c$ (≠ even)
So $z$ has to be definitely 1 or 2017.
So we have case one: c = 1 if z is 2017
and case two: c = 2017 if z is 1.
Case one:
$(c=1;z=2017)$
1.) $a+b-1 = 57$
2.) $a^2 +b^2 -c^2= 2017$
If we divide 2.) by 1.)
we get:
1.) $a + b + 1 = 57 => a+b = 56$
$a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$
2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$
This makes no sense... ↯
Case two:
$(c=2017;z=1)$
1.) $a+b +2017 = 57$
2.) $a^2 + b^2 - 2017^2 = 1$
We end up with:
$(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$
I'm not 100% sure but i guess i'm right.
If not, pls comment.
Thx.
add a comment |
up vote
0
down vote
I have found a solution for my problem.
There are no numbers that fulfill the equation.
So (a,b,c) ∈ ℕ
$z*c=2017$
2017 is a Prime number. If
$z ≠ 1 ⋁ 2017$
then $c$ will logically be an odd number,
because else if z is not 1 or 2017 we'll have:
$2017/z = c$ (≠ even)
So $z$ has to be definitely 1 or 2017.
So we have case one: c = 1 if z is 2017
and case two: c = 2017 if z is 1.
Case one:
$(c=1;z=2017)$
1.) $a+b-1 = 57$
2.) $a^2 +b^2 -c^2= 2017$
If we divide 2.) by 1.)
we get:
1.) $a + b + 1 = 57 => a+b = 56$
$a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$
2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$
This makes no sense... ↯
Case two:
$(c=2017;z=1)$
1.) $a+b +2017 = 57$
2.) $a^2 + b^2 - 2017^2 = 1$
We end up with:
$(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$
I'm not 100% sure but i guess i'm right.
If not, pls comment.
Thx.
add a comment |
up vote
0
down vote
up vote
0
down vote
I have found a solution for my problem.
There are no numbers that fulfill the equation.
So (a,b,c) ∈ ℕ
$z*c=2017$
2017 is a Prime number. If
$z ≠ 1 ⋁ 2017$
then $c$ will logically be an odd number,
because else if z is not 1 or 2017 we'll have:
$2017/z = c$ (≠ even)
So $z$ has to be definitely 1 or 2017.
So we have case one: c = 1 if z is 2017
and case two: c = 2017 if z is 1.
Case one:
$(c=1;z=2017)$
1.) $a+b-1 = 57$
2.) $a^2 +b^2 -c^2= 2017$
If we divide 2.) by 1.)
we get:
1.) $a + b + 1 = 57 => a+b = 56$
$a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$
2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$
This makes no sense... ↯
Case two:
$(c=2017;z=1)$
1.) $a+b +2017 = 57$
2.) $a^2 + b^2 - 2017^2 = 1$
We end up with:
$(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$
I'm not 100% sure but i guess i'm right.
If not, pls comment.
Thx.
I have found a solution for my problem.
There are no numbers that fulfill the equation.
So (a,b,c) ∈ ℕ
$z*c=2017$
2017 is a Prime number. If
$z ≠ 1 ⋁ 2017$
then $c$ will logically be an odd number,
because else if z is not 1 or 2017 we'll have:
$2017/z = c$ (≠ even)
So $z$ has to be definitely 1 or 2017.
So we have case one: c = 1 if z is 2017
and case two: c = 2017 if z is 1.
Case one:
$(c=1;z=2017)$
1.) $a+b-1 = 57$
2.) $a^2 +b^2 -c^2= 2017$
If we divide 2.) by 1.)
we get:
1.) $a + b + 1 = 57 => a+b = 56$
$a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$
2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$
This makes no sense... ↯
Case two:
$(c=2017;z=1)$
1.) $a+b +2017 = 57$
2.) $a^2 + b^2 - 2017^2 = 1$
We end up with:
$(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$
I'm not 100% sure but i guess i'm right.
If not, pls comment.
Thx.
answered Nov 13 at 20:46
community wiki
calculatormathematical
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2915640%2fsolving-equations-depending-on-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08
$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23
"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30
But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57