Solving equations depending on $z$











up vote
0
down vote

favorite












For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$



$a+b+c=57$



$a^2+b^2−c^2=z$



$z·c=2017$



I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?










share|cite|improve this question




















  • 1




    Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
    – астон вілла олоф мэллбэрг
    Sep 13 at 14:08










  • $(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
    – user376343
    Sep 13 at 14:23










  • "Now one can eliminate $c^2$..." Sure?
    – Paul
    Sep 13 at 14:30










  • But $a^2+b^2 = 57^2-c^2$
    – calculatormathematical
    Sep 13 at 14:57















up vote
0
down vote

favorite












For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$



$a+b+c=57$



$a^2+b^2−c^2=z$



$z·c=2017$



I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?










share|cite|improve this question




















  • 1




    Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
    – астон вілла олоф мэллбэрг
    Sep 13 at 14:08










  • $(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
    – user376343
    Sep 13 at 14:23










  • "Now one can eliminate $c^2$..." Sure?
    – Paul
    Sep 13 at 14:30










  • But $a^2+b^2 = 57^2-c^2$
    – calculatormathematical
    Sep 13 at 14:57













up vote
0
down vote

favorite









up vote
0
down vote

favorite











For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$



$a+b+c=57$



$a^2+b^2−c^2=z$



$z·c=2017$



I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?










share|cite|improve this question















For witch real number $z$, are there positive integers $a$, $b$ and $c$, that fulfill this system of equations? $(a,b,c)∈ℕ$



$a+b+c=57$



$a^2+b^2−c^2=z$



$z·c=2017$



I need to determine all variables $(a, b, c)$ depending on $z$.
Any hints?







systems-of-equations diophantine-equations quadratics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 at 12:01









Harry Peter

5,43111439




5,43111439










asked Sep 13 at 14:05









calculatormathematical

389




389








  • 1




    Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
    – астон вілла олоф мэллбэрг
    Sep 13 at 14:08










  • $(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
    – user376343
    Sep 13 at 14:23










  • "Now one can eliminate $c^2$..." Sure?
    – Paul
    Sep 13 at 14:30










  • But $a^2+b^2 = 57^2-c^2$
    – calculatormathematical
    Sep 13 at 14:57














  • 1




    Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
    – астон вілла олоф мэллбэрг
    Sep 13 at 14:08










  • $(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
    – user376343
    Sep 13 at 14:23










  • "Now one can eliminate $c^2$..." Sure?
    – Paul
    Sep 13 at 14:30










  • But $a^2+b^2 = 57^2-c^2$
    – calculatormathematical
    Sep 13 at 14:57








1




1




Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08




Note that $z$ must also be an integer if $a,b,c$ are. Now if $c cdot z = 2017$ and $2017$ is prime,..
– астон вілла олоф мэллбэрг
Sep 13 at 14:08












$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23




$(a+b)^2 neq a^2 + b^2,$ similarly for $(57+z)^2.$
– user376343
Sep 13 at 14:23












"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30




"Now one can eliminate $c^2$..." Sure?
– Paul
Sep 13 at 14:30












But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57




But $a^2+b^2 = 57^2-c^2$
– calculatormathematical
Sep 13 at 14:57










1 Answer
1






active

oldest

votes

















up vote
0
down vote













I have found a solution for my problem.



There are no numbers that fulfill the equation.
So (a,b,c) ∈ ℕ



$z*c=2017$



2017 is a Prime number. If



$z ≠ 1 ⋁ 2017$



then $c$ will logically be an odd number,
because else if z is not 1 or 2017 we'll have:



$2017/z = c$ (≠ even)



So $z$ has to be definitely 1 or 2017.



So we have case one: c = 1 if z is 2017
and case two: c = 2017 if z is 1.



Case one:
$(c=1;z=2017)$



1.) $a+b-1 = 57$
2.) $a^2 +b^2 -c^2= 2017$



If we divide 2.) by 1.)
we get:



1.) $a + b + 1 = 57 => a+b = 56$



$a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$



2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$



This makes no sense... ↯



Case two:
$(c=2017;z=1)$



1.) $a+b +2017 = 57$



2.) $a^2 + b^2 - 2017^2 = 1$



We end up with:



$(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$



I'm not 100% sure but i guess i'm right.
If not, pls comment.



Thx.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2915640%2fsolving-equations-depending-on-z%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    I have found a solution for my problem.



    There are no numbers that fulfill the equation.
    So (a,b,c) ∈ ℕ



    $z*c=2017$



    2017 is a Prime number. If



    $z ≠ 1 ⋁ 2017$



    then $c$ will logically be an odd number,
    because else if z is not 1 or 2017 we'll have:



    $2017/z = c$ (≠ even)



    So $z$ has to be definitely 1 or 2017.



    So we have case one: c = 1 if z is 2017
    and case two: c = 2017 if z is 1.



    Case one:
    $(c=1;z=2017)$



    1.) $a+b-1 = 57$
    2.) $a^2 +b^2 -c^2= 2017$



    If we divide 2.) by 1.)
    we get:



    1.) $a + b + 1 = 57 => a+b = 56$



    $a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$



    2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$



    This makes no sense... ↯



    Case two:
    $(c=2017;z=1)$



    1.) $a+b +2017 = 57$



    2.) $a^2 + b^2 - 2017^2 = 1$



    We end up with:



    $(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$



    I'm not 100% sure but i guess i'm right.
    If not, pls comment.



    Thx.






    share|cite|improve this answer



























      up vote
      0
      down vote













      I have found a solution for my problem.



      There are no numbers that fulfill the equation.
      So (a,b,c) ∈ ℕ



      $z*c=2017$



      2017 is a Prime number. If



      $z ≠ 1 ⋁ 2017$



      then $c$ will logically be an odd number,
      because else if z is not 1 or 2017 we'll have:



      $2017/z = c$ (≠ even)



      So $z$ has to be definitely 1 or 2017.



      So we have case one: c = 1 if z is 2017
      and case two: c = 2017 if z is 1.



      Case one:
      $(c=1;z=2017)$



      1.) $a+b-1 = 57$
      2.) $a^2 +b^2 -c^2= 2017$



      If we divide 2.) by 1.)
      we get:



      1.) $a + b + 1 = 57 => a+b = 56$



      $a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$



      2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$



      This makes no sense... ↯



      Case two:
      $(c=2017;z=1)$



      1.) $a+b +2017 = 57$



      2.) $a^2 + b^2 - 2017^2 = 1$



      We end up with:



      $(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$



      I'm not 100% sure but i guess i'm right.
      If not, pls comment.



      Thx.






      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        I have found a solution for my problem.



        There are no numbers that fulfill the equation.
        So (a,b,c) ∈ ℕ



        $z*c=2017$



        2017 is a Prime number. If



        $z ≠ 1 ⋁ 2017$



        then $c$ will logically be an odd number,
        because else if z is not 1 or 2017 we'll have:



        $2017/z = c$ (≠ even)



        So $z$ has to be definitely 1 or 2017.



        So we have case one: c = 1 if z is 2017
        and case two: c = 2017 if z is 1.



        Case one:
        $(c=1;z=2017)$



        1.) $a+b-1 = 57$
        2.) $a^2 +b^2 -c^2= 2017$



        If we divide 2.) by 1.)
        we get:



        1.) $a + b + 1 = 57 => a+b = 56$



        $a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$



        2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$



        This makes no sense... ↯



        Case two:
        $(c=2017;z=1)$



        1.) $a+b +2017 = 57$



        2.) $a^2 + b^2 - 2017^2 = 1$



        We end up with:



        $(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$



        I'm not 100% sure but i guess i'm right.
        If not, pls comment.



        Thx.






        share|cite|improve this answer














        I have found a solution for my problem.



        There are no numbers that fulfill the equation.
        So (a,b,c) ∈ ℕ



        $z*c=2017$



        2017 is a Prime number. If



        $z ≠ 1 ⋁ 2017$



        then $c$ will logically be an odd number,
        because else if z is not 1 or 2017 we'll have:



        $2017/z = c$ (≠ even)



        So $z$ has to be definitely 1 or 2017.



        So we have case one: c = 1 if z is 2017
        and case two: c = 2017 if z is 1.



        Case one:
        $(c=1;z=2017)$



        1.) $a+b-1 = 57$
        2.) $a^2 +b^2 -c^2= 2017$



        If we divide 2.) by 1.)
        we get:



        1.) $a + b + 1 = 57 => a+b = 56$



        $a^2 + b^2 -1^2 = 2017 => a^2 + b^2 = 2018$



        2.) / 1.) $(a^2 +b^2) / (a+b) = 2018 / 56$



        This makes no sense... ↯



        Case two:
        $(c=2017;z=1)$



        1.) $a+b +2017 = 57$



        2.) $a^2 + b^2 - 2017^2 = 1$



        We end up with:



        $(a^2 + b^2) / (a+b) = (2017^2) / (57-2017)$



        I'm not 100% sure but i guess i'm right.
        If not, pls comment.



        Thx.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        answered Nov 13 at 20:46


























        community wiki





        calculatormathematical































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2915640%2fsolving-equations-depending-on-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen