Why can Mathematica solve integral(a)+integral(b), but not integral(a+b)?











up vote
3
down vote

favorite
1












I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



$$
text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
$$



Nevertheless the splitted integral can be solved.



$$
text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
$$



What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.










share|improve this question


























    up vote
    3
    down vote

    favorite
    1












    I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



    $$
    text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
    epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
    log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
    $$



    Nevertheless the splitted integral can be solved.



    $$
    text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
    epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
    ^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
    $$



    What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.










    share|improve this question
























      up vote
      3
      down vote

      favorite
      1









      up vote
      3
      down vote

      favorite
      1






      1





      I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



      $$
      text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
      epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
      log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
      $$



      Nevertheless the splitted integral can be solved.



      $$
      text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
      epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
      ^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
      $$



      What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.










      share|improve this question













      I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



      $$
      text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
      epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
      log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
      $$



      Nevertheless the splitted integral can be solved.



      $$
      text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
      epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
      ^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
      $$



      What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.







      calculus-and-analysis






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 23 at 9:49









      Schnarco

      182




      182






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer





















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186555%2fwhy-can-mathematica-solve-integralaintegralb-but-not-integralab%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer





















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22















          up vote
          2
          down vote



          accepted










          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer





















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22













          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer












          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 23 at 10:26









          Rolf Mertig

          13.6k13366




          13.6k13366












          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22


















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22
















          Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
          – Schnarco
          Nov 23 at 10:47




          Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
          – Schnarco
          Nov 23 at 10:47












          Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
          – Rolf Mertig
          Nov 23 at 11:22




          Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
          – Rolf Mertig
          Nov 23 at 11:22


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186555%2fwhy-can-mathematica-solve-integralaintegralb-but-not-integralab%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen