Prove that $prodlimits_{k=1}^infty left(1+frac1{2^k}right) lt e ?$












1














How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$



Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?



A hint about solving the problem was given but I don't know how to prove the lemma.



Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$










share|cite|improve this question
























  • Can you figure out a way to complete the proof by the given hint?
    – gimusi
    Oct 22 '18 at 9:46










  • math.stackexchange.com/questions/1110242/…
    – Jack D'Aurizio
    Oct 22 '18 at 13:12
















1














How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$



Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?



A hint about solving the problem was given but I don't know how to prove the lemma.



Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$










share|cite|improve this question
























  • Can you figure out a way to complete the proof by the given hint?
    – gimusi
    Oct 22 '18 at 9:46










  • math.stackexchange.com/questions/1110242/…
    – Jack D'Aurizio
    Oct 22 '18 at 13:12














1












1








1


1





How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$



Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?



A hint about solving the problem was given but I don't know how to prove the lemma.



Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$










share|cite|improve this question















How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$



Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?



A hint about solving the problem was given but I don't know how to prove the lemma.



Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$







inequality products infinite-product






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 1 '18 at 21:10









Martin Sleziak

44.7k7115270




44.7k7115270










asked Oct 22 '18 at 8:18









AtiqRahman

191




191












  • Can you figure out a way to complete the proof by the given hint?
    – gimusi
    Oct 22 '18 at 9:46










  • math.stackexchange.com/questions/1110242/…
    – Jack D'Aurizio
    Oct 22 '18 at 13:12


















  • Can you figure out a way to complete the proof by the given hint?
    – gimusi
    Oct 22 '18 at 9:46










  • math.stackexchange.com/questions/1110242/…
    – Jack D'Aurizio
    Oct 22 '18 at 13:12
















Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46




Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46












math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12




math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12










3 Answers
3






active

oldest

votes


















3














HINT



Taking $log$ both sides the statement is equivalent to prove that



$$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$



then use $log(1+x)<x$.






share|cite|improve this answer





























    2














    It can be easily shown that for any $xin(0,1)$ we have



    $$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
    and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
    $$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
    By telescoping it follows that
    $$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
    and by picking $n=4$ we have
    $$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
    such that the first figures of the middle term are $color{green}{2.3842}$.
    By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.

    As a continued fraction
    $$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
    while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.






    share|cite|improve this answer





























      0














      Proof of the Lemma by Induction.
      Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
      For$n=1$ the result is obvious.
      Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
      $$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
      $$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
      $$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
      Thus we have,
      $$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
      Hence $P(m+1)$ is true whenever $P(m)$ is true.
      Therefore $P(n)$ is true in general.






      share|cite|improve this answer























      • Induction doesn't give much insight for the proof.
        – AtiqRahman
        Oct 22 '18 at 8:49











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2965717%2fprove-that-prod-limits-k-1-infty-left1-frac12k-right-lt-e%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      HINT



      Taking $log$ both sides the statement is equivalent to prove that



      $$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$



      then use $log(1+x)<x$.






      share|cite|improve this answer


























        3














        HINT



        Taking $log$ both sides the statement is equivalent to prove that



        $$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$



        then use $log(1+x)<x$.






        share|cite|improve this answer
























          3












          3








          3






          HINT



          Taking $log$ both sides the statement is equivalent to prove that



          $$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$



          then use $log(1+x)<x$.






          share|cite|improve this answer












          HINT



          Taking $log$ both sides the statement is equivalent to prove that



          $$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$



          then use $log(1+x)<x$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Oct 22 '18 at 8:27









          gimusi

          1




          1























              2














              It can be easily shown that for any $xin(0,1)$ we have



              $$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
              and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
              $$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
              By telescoping it follows that
              $$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
              and by picking $n=4$ we have
              $$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
              such that the first figures of the middle term are $color{green}{2.3842}$.
              By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.

              As a continued fraction
              $$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
              while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.






              share|cite|improve this answer


























                2














                It can be easily shown that for any $xin(0,1)$ we have



                $$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
                and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
                $$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
                By telescoping it follows that
                $$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
                and by picking $n=4$ we have
                $$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
                such that the first figures of the middle term are $color{green}{2.3842}$.
                By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.

                As a continued fraction
                $$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
                while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.






                share|cite|improve this answer
























                  2












                  2








                  2






                  It can be easily shown that for any $xin(0,1)$ we have



                  $$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
                  and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
                  $$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
                  By telescoping it follows that
                  $$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
                  and by picking $n=4$ we have
                  $$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
                  such that the first figures of the middle term are $color{green}{2.3842}$.
                  By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.

                  As a continued fraction
                  $$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
                  while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.






                  share|cite|improve this answer












                  It can be easily shown that for any $xin(0,1)$ we have



                  $$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
                  and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
                  $$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
                  By telescoping it follows that
                  $$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
                  and by picking $n=4$ we have
                  $$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
                  such that the first figures of the middle term are $color{green}{2.3842}$.
                  By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.

                  As a continued fraction
                  $$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
                  while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Oct 22 '18 at 13:51









                  Jack D'Aurizio

                  286k33279656




                  286k33279656























                      0














                      Proof of the Lemma by Induction.
                      Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
                      For$n=1$ the result is obvious.
                      Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
                      $$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
                      $$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
                      $$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
                      Thus we have,
                      $$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
                      Hence $P(m+1)$ is true whenever $P(m)$ is true.
                      Therefore $P(n)$ is true in general.






                      share|cite|improve this answer























                      • Induction doesn't give much insight for the proof.
                        – AtiqRahman
                        Oct 22 '18 at 8:49
















                      0














                      Proof of the Lemma by Induction.
                      Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
                      For$n=1$ the result is obvious.
                      Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
                      $$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
                      $$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
                      $$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
                      Thus we have,
                      $$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
                      Hence $P(m+1)$ is true whenever $P(m)$ is true.
                      Therefore $P(n)$ is true in general.






                      share|cite|improve this answer























                      • Induction doesn't give much insight for the proof.
                        – AtiqRahman
                        Oct 22 '18 at 8:49














                      0












                      0








                      0






                      Proof of the Lemma by Induction.
                      Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
                      For$n=1$ the result is obvious.
                      Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
                      $$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
                      $$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
                      $$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
                      Thus we have,
                      $$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
                      Hence $P(m+1)$ is true whenever $P(m)$ is true.
                      Therefore $P(n)$ is true in general.






                      share|cite|improve this answer














                      Proof of the Lemma by Induction.
                      Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
                      For$n=1$ the result is obvious.
                      Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
                      $$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
                      $$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
                      $$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
                      Thus we have,
                      $$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
                      Hence $P(m+1)$ is true whenever $P(m)$ is true.
                      Therefore $P(n)$ is true in general.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Oct 22 '18 at 8:51

























                      answered Oct 22 '18 at 8:47









                      Awe Kumar Jha

                      38613




                      38613












                      • Induction doesn't give much insight for the proof.
                        – AtiqRahman
                        Oct 22 '18 at 8:49


















                      • Induction doesn't give much insight for the proof.
                        – AtiqRahman
                        Oct 22 '18 at 8:49
















                      Induction doesn't give much insight for the proof.
                      – AtiqRahman
                      Oct 22 '18 at 8:49




                      Induction doesn't give much insight for the proof.
                      – AtiqRahman
                      Oct 22 '18 at 8:49


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2965717%2fprove-that-prod-limits-k-1-infty-left1-frac12k-right-lt-e%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Wiesbaden

                      Marschland

                      Dieringhausen