Prove that $prodlimits_{k=1}^infty left(1+frac1{2^k}right) lt e ?$
How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$
Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?
A hint about solving the problem was given but I don't know how to prove the lemma.
Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$
inequality products infinite-product
add a comment |
How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$
Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?
A hint about solving the problem was given but I don't know how to prove the lemma.
Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$
inequality products infinite-product
Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46
math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12
add a comment |
How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$
Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?
A hint about solving the problem was given but I don't know how to prove the lemma.
Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$
inequality products infinite-product
How would you prove that $$displaystyle prod_{k=1}^infty left(1+dfrac{1}{2^k}right) lt e ?$$
Wolfram|Alpha shows that the product evaluates to $2.384231 dots$ but is there a nice way to write this number?
A hint about solving the problem was given but I don't know how to prove the lemma.
Lemma : Let, $a_1,a_2,a_3, ldots,a_n$ be positive numbers and let $s=a_1+a_2+a_3+cdots+a_n$ then $$(1+a_1)(1+a_2)(1+a_3)cdots(1+a_n)$$ $$le 1+s+dfrac{s^2}{2!}+dfrac{s^3}{3!}+cdots+dfrac{s^n}{n!}$$
inequality products infinite-product
inequality products infinite-product
edited Dec 1 '18 at 21:10
Martin Sleziak
44.7k7115270
44.7k7115270
asked Oct 22 '18 at 8:18
AtiqRahman
191
191
Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46
math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12
add a comment |
Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46
math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12
Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46
Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46
math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12
math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12
add a comment |
3 Answers
3
active
oldest
votes
HINT
Taking $log$ both sides the statement is equivalent to prove that
$$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$
then use $log(1+x)<x$.
add a comment |
It can be easily shown that for any $xin(0,1)$ we have
$$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
$$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
By telescoping it follows that
$$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
and by picking $n=4$ we have
$$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
such that the first figures of the middle term are $color{green}{2.3842}$.
By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.
As a continued fraction
$$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.
add a comment |
Proof of the Lemma by Induction.
Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
For$n=1$ the result is obvious.
Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
$$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
$$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
$$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
Thus we have,
$$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
Hence $P(m+1)$ is true whenever $P(m)$ is true.
Therefore $P(n)$ is true in general.
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2965717%2fprove-that-prod-limits-k-1-infty-left1-frac12k-right-lt-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
HINT
Taking $log$ both sides the statement is equivalent to prove that
$$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$
then use $log(1+x)<x$.
add a comment |
HINT
Taking $log$ both sides the statement is equivalent to prove that
$$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$
then use $log(1+x)<x$.
add a comment |
HINT
Taking $log$ both sides the statement is equivalent to prove that
$$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$
then use $log(1+x)<x$.
HINT
Taking $log$ both sides the statement is equivalent to prove that
$$sum_{k=1}^infty log left(1+dfrac{1}{2^k}right) lt 1$$
then use $log(1+x)<x$.
answered Oct 22 '18 at 8:27
gimusi
1
1
add a comment |
add a comment |
It can be easily shown that for any $xin(0,1)$ we have
$$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
$$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
By telescoping it follows that
$$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
and by picking $n=4$ we have
$$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
such that the first figures of the middle term are $color{green}{2.3842}$.
By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.
As a continued fraction
$$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.
add a comment |
It can be easily shown that for any $xin(0,1)$ we have
$$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
$$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
By telescoping it follows that
$$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
and by picking $n=4$ we have
$$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
such that the first figures of the middle term are $color{green}{2.3842}$.
By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.
As a continued fraction
$$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.
add a comment |
It can be easily shown that for any $xin(0,1)$ we have
$$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
$$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
By telescoping it follows that
$$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
and by picking $n=4$ we have
$$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
such that the first figures of the middle term are $color{green}{2.3842}$.
By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.
As a continued fraction
$$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.
It can be easily shown that for any $xin(0,1)$ we have
$$ frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9765}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9765}} <1+x < frac{1+2x+frac{4x^2}{3}+frac{8x^3}{21}+frac{16 x^4}{315}+frac{32 x^5}{9450}}{1+x+frac{x^2}{3}+frac{x^3}{21}+frac{x^4}{315}+frac{x^5}{9450}} $$
and in general, by setting $D_m=prod_{k=1}^{m}(2^k-1)$ and $p_n(x)=1+sum_{k=1}^{n}frac{x^k}{D_k}$,
$$ frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n+1}}}{p_n(x)+frac{x^{n+1}}{D_{n+1}}}<1+x< frac{p_n(2x)+frac{2^{n+1}x^{n+1}}{D_{n}(2^{n+1}-2)}}{p_n(x)+frac{x^{n+1}}{D_{n}(2^{n+1}-2)}}.$$
By telescoping it follows that
$$ p_n(1)+frac{1}{D_{n+1}}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<p_n(1)+frac{1}{D_n(2^{n+1}-2)} $$
and by picking $n=4$ we have
$$ frac{3326}{1395}<prod_{kgeq 1}left(1+frac{1}{2^k}right)<frac{22531}{9450} $$
such that the first figures of the middle term are $color{green}{2.3842}$.
By picking $n=10$ we get that the middle term is $color{green}{2.384231029ldots}$.
As a continued fraction
$$ prod_{kgeq 1}left(1+frac{1}{2^k}right)=left[2; 2, 1, 1, 1, 1, 14, 1, 3, 1, 1, 6, 9, 18, 7, 1, 27,ldotsright]$$
while $e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,ldots]$.
answered Oct 22 '18 at 13:51
Jack D'Aurizio
286k33279656
286k33279656
add a comment |
add a comment |
Proof of the Lemma by Induction.
Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
For$n=1$ the result is obvious.
Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
$$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
$$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
$$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
Thus we have,
$$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
Hence $P(m+1)$ is true whenever $P(m)$ is true.
Therefore $P(n)$ is true in general.
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
add a comment |
Proof of the Lemma by Induction.
Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
For$n=1$ the result is obvious.
Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
$$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
$$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
$$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
Thus we have,
$$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
Hence $P(m+1)$ is true whenever $P(m)$ is true.
Therefore $P(n)$ is true in general.
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
add a comment |
Proof of the Lemma by Induction.
Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
For$n=1$ the result is obvious.
Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
$$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
$$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
$$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
Thus we have,
$$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
Hence $P(m+1)$ is true whenever $P(m)$ is true.
Therefore $P(n)$ is true in general.
Proof of the Lemma by Induction.
Let $P(n): (1+a_1)(1+a_2)...(1+a_n) ≤ 1 + s_n + ... + frac {s_n^n}{n!}$
For$n=1$ the result is obvious.
Let $P(m): (1+a_1)(1+a_2)...(1+a_m) ≤ 1 + s_m + ... + frac {s_m^m}{m!}$ be true. Then,
$$1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}$$
$$= 1 + (s_m + a_{m+1}) + ... + frac {(s_m + a_{m+1})^{m+1}}{(m+1)!}$$
$$= 1 + s_m + ... + frac {s_m^m}{m!} + Q , Q>0$$
Thus we have,
$$(1 + s_{m+1} + ... + frac {s_{m+1}^{m+1}}{(m+1)!}) - Q = 1 + s_m + ... + frac {s_m^m}{m!} ≥ (1+a_1)(1+a_2)...(1+a_m) < (1+a_1)(1+a_2)...(1+a_m)(1+a_{m+1})$$
Hence $P(m+1)$ is true whenever $P(m)$ is true.
Therefore $P(n)$ is true in general.
edited Oct 22 '18 at 8:51
answered Oct 22 '18 at 8:47
Awe Kumar Jha
38613
38613
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
add a comment |
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
Induction doesn't give much insight for the proof.
– AtiqRahman
Oct 22 '18 at 8:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2965717%2fprove-that-prod-limits-k-1-infty-left1-frac12k-right-lt-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Can you figure out a way to complete the proof by the given hint?
– gimusi
Oct 22 '18 at 9:46
math.stackexchange.com/questions/1110242/…
– Jack D'Aurizio
Oct 22 '18 at 13:12