a question related to calculus of variations
$begingroup$
Consider a particle with coordinates $(x(t),y(t))$ on a smooth curve $phi(x,y)=0$. If the particle moves from $(x(0),y(0))$ to $(x(tau),y(tau))$ for $tau >0$ such that its kinetic energy is minimized, then
$(a)$ $frac{ddot{x}}{phi_x}=frac{ddot{y}}{phi_y}$.
$(b)$ $dot{x}^2(0)+dot{y}^2(0)=dot{x}^2(tau)+dot{y}^2(tau)$.
$(c)$ $dot{x}phi_x+dot{y}phi_y=0$.
$(d)$ $dot{x}^2(0)=dot{x}^2(tau)$.
Now, if we consider this problem as minimizing a functional $J[x(t),y(t)]=int_0^tau F(x,dot{x},y,dot{y},t)dt$ in two dependent variables representing coordinates and one independent variable representing time, then Euler-Lagrange equation will give a family of extremals from which we can conclude the answer. But I am unable to find a way to relate the K.E. as a functional as written above, and include the curve $phi(x,y)=0$ in the same. So is there another method for this problem or am I on the right track? Any help will be appreciated.
calculus-of-variations
$endgroup$
add a comment |
$begingroup$
Consider a particle with coordinates $(x(t),y(t))$ on a smooth curve $phi(x,y)=0$. If the particle moves from $(x(0),y(0))$ to $(x(tau),y(tau))$ for $tau >0$ such that its kinetic energy is minimized, then
$(a)$ $frac{ddot{x}}{phi_x}=frac{ddot{y}}{phi_y}$.
$(b)$ $dot{x}^2(0)+dot{y}^2(0)=dot{x}^2(tau)+dot{y}^2(tau)$.
$(c)$ $dot{x}phi_x+dot{y}phi_y=0$.
$(d)$ $dot{x}^2(0)=dot{x}^2(tau)$.
Now, if we consider this problem as minimizing a functional $J[x(t),y(t)]=int_0^tau F(x,dot{x},y,dot{y},t)dt$ in two dependent variables representing coordinates and one independent variable representing time, then Euler-Lagrange equation will give a family of extremals from which we can conclude the answer. But I am unable to find a way to relate the K.E. as a functional as written above, and include the curve $phi(x,y)=0$ in the same. So is there another method for this problem or am I on the right track? Any help will be appreciated.
calculus-of-variations
$endgroup$
add a comment |
$begingroup$
Consider a particle with coordinates $(x(t),y(t))$ on a smooth curve $phi(x,y)=0$. If the particle moves from $(x(0),y(0))$ to $(x(tau),y(tau))$ for $tau >0$ such that its kinetic energy is minimized, then
$(a)$ $frac{ddot{x}}{phi_x}=frac{ddot{y}}{phi_y}$.
$(b)$ $dot{x}^2(0)+dot{y}^2(0)=dot{x}^2(tau)+dot{y}^2(tau)$.
$(c)$ $dot{x}phi_x+dot{y}phi_y=0$.
$(d)$ $dot{x}^2(0)=dot{x}^2(tau)$.
Now, if we consider this problem as minimizing a functional $J[x(t),y(t)]=int_0^tau F(x,dot{x},y,dot{y},t)dt$ in two dependent variables representing coordinates and one independent variable representing time, then Euler-Lagrange equation will give a family of extremals from which we can conclude the answer. But I am unable to find a way to relate the K.E. as a functional as written above, and include the curve $phi(x,y)=0$ in the same. So is there another method for this problem or am I on the right track? Any help will be appreciated.
calculus-of-variations
$endgroup$
Consider a particle with coordinates $(x(t),y(t))$ on a smooth curve $phi(x,y)=0$. If the particle moves from $(x(0),y(0))$ to $(x(tau),y(tau))$ for $tau >0$ such that its kinetic energy is minimized, then
$(a)$ $frac{ddot{x}}{phi_x}=frac{ddot{y}}{phi_y}$.
$(b)$ $dot{x}^2(0)+dot{y}^2(0)=dot{x}^2(tau)+dot{y}^2(tau)$.
$(c)$ $dot{x}phi_x+dot{y}phi_y=0$.
$(d)$ $dot{x}^2(0)=dot{x}^2(tau)$.
Now, if we consider this problem as minimizing a functional $J[x(t),y(t)]=int_0^tau F(x,dot{x},y,dot{y},t)dt$ in two dependent variables representing coordinates and one independent variable representing time, then Euler-Lagrange equation will give a family of extremals from which we can conclude the answer. But I am unable to find a way to relate the K.E. as a functional as written above, and include the curve $phi(x,y)=0$ in the same. So is there another method for this problem or am I on the right track? Any help will be appreciated.
calculus-of-variations
calculus-of-variations
asked Dec 13 '18 at 18:11
am_11235...am_11235...
1747
1747
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint.
Defining the Lagrangian with $X = (x(t),y(t))$
$$
L(X,dot X,lambda) = frac m2left(dot x(t)^2+dot y(t)^2right)+lambda phi(x(t),y(t))
$$
we have the Euler-Lagrange movement equations
$$
L_X-frac{d}{dt}left(L_{X'}right) = left{begin{array}{rcl}m ddot x(t)-lambdaphi_x(x(t),y(t)) & = & 0\ m ddot y(t)-lambdaphi_y(x(t),y(t)) & = & 0end{array}right.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038396%2fa-question-related-to-calculus-of-variations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint.
Defining the Lagrangian with $X = (x(t),y(t))$
$$
L(X,dot X,lambda) = frac m2left(dot x(t)^2+dot y(t)^2right)+lambda phi(x(t),y(t))
$$
we have the Euler-Lagrange movement equations
$$
L_X-frac{d}{dt}left(L_{X'}right) = left{begin{array}{rcl}m ddot x(t)-lambdaphi_x(x(t),y(t)) & = & 0\ m ddot y(t)-lambdaphi_y(x(t),y(t)) & = & 0end{array}right.
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Defining the Lagrangian with $X = (x(t),y(t))$
$$
L(X,dot X,lambda) = frac m2left(dot x(t)^2+dot y(t)^2right)+lambda phi(x(t),y(t))
$$
we have the Euler-Lagrange movement equations
$$
L_X-frac{d}{dt}left(L_{X'}right) = left{begin{array}{rcl}m ddot x(t)-lambdaphi_x(x(t),y(t)) & = & 0\ m ddot y(t)-lambdaphi_y(x(t),y(t)) & = & 0end{array}right.
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Defining the Lagrangian with $X = (x(t),y(t))$
$$
L(X,dot X,lambda) = frac m2left(dot x(t)^2+dot y(t)^2right)+lambda phi(x(t),y(t))
$$
we have the Euler-Lagrange movement equations
$$
L_X-frac{d}{dt}left(L_{X'}right) = left{begin{array}{rcl}m ddot x(t)-lambdaphi_x(x(t),y(t)) & = & 0\ m ddot y(t)-lambdaphi_y(x(t),y(t)) & = & 0end{array}right.
$$
$endgroup$
Hint.
Defining the Lagrangian with $X = (x(t),y(t))$
$$
L(X,dot X,lambda) = frac m2left(dot x(t)^2+dot y(t)^2right)+lambda phi(x(t),y(t))
$$
we have the Euler-Lagrange movement equations
$$
L_X-frac{d}{dt}left(L_{X'}right) = left{begin{array}{rcl}m ddot x(t)-lambdaphi_x(x(t),y(t)) & = & 0\ m ddot y(t)-lambdaphi_y(x(t),y(t)) & = & 0end{array}right.
$$
edited Dec 13 '18 at 22:08
answered Dec 13 '18 at 18:43
CesareoCesareo
8,7193516
8,7193516
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038396%2fa-question-related-to-calculus-of-variations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown