Find constant k with the probability mass function of a geometric series
$begingroup$
Ok so I'm having some trouble getting this done. I think I've got the answer but I'm not really sure on how I could verify that the result I got is actually the correct answer.
So here's what the exercise says:
$f(x) = k(frac{1}{5})^{2x+3}$
where a discrete random variable $X = 0,1,2,3,....$
So I know this is a function for a geometric series given that the range for X is infinite.
Here's what I did:
- $sumlimits_{i = 0}^infty k(frac{1}{5})^{2x + 3} = 1$
- $frac{k}{125}sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = 1$
- $frac{k}{125}(frac{1}{1-frac{1}{5}}) = 1$
- $frac{k}{125}(frac{5}{4}) = 1$
- $frac{k}{100} = 1$
- $k = 100$
So how do I know that is ok, I thought about using limits but I'm not sure if that is correct.
probability probability-distributions
$endgroup$
add a comment |
$begingroup$
Ok so I'm having some trouble getting this done. I think I've got the answer but I'm not really sure on how I could verify that the result I got is actually the correct answer.
So here's what the exercise says:
$f(x) = k(frac{1}{5})^{2x+3}$
where a discrete random variable $X = 0,1,2,3,....$
So I know this is a function for a geometric series given that the range for X is infinite.
Here's what I did:
- $sumlimits_{i = 0}^infty k(frac{1}{5})^{2x + 3} = 1$
- $frac{k}{125}sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = 1$
- $frac{k}{125}(frac{1}{1-frac{1}{5}}) = 1$
- $frac{k}{125}(frac{5}{4}) = 1$
- $frac{k}{100} = 1$
- $k = 100$
So how do I know that is ok, I thought about using limits but I'm not sure if that is correct.
probability probability-distributions
$endgroup$
$begingroup$
$sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = sumlimits_{i = 0}^infty (frac{1}{25})^{x} = frac{25}{24}$
$endgroup$
– Henry
Sep 30 '15 at 22:29
add a comment |
$begingroup$
Ok so I'm having some trouble getting this done. I think I've got the answer but I'm not really sure on how I could verify that the result I got is actually the correct answer.
So here's what the exercise says:
$f(x) = k(frac{1}{5})^{2x+3}$
where a discrete random variable $X = 0,1,2,3,....$
So I know this is a function for a geometric series given that the range for X is infinite.
Here's what I did:
- $sumlimits_{i = 0}^infty k(frac{1}{5})^{2x + 3} = 1$
- $frac{k}{125}sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = 1$
- $frac{k}{125}(frac{1}{1-frac{1}{5}}) = 1$
- $frac{k}{125}(frac{5}{4}) = 1$
- $frac{k}{100} = 1$
- $k = 100$
So how do I know that is ok, I thought about using limits but I'm not sure if that is correct.
probability probability-distributions
$endgroup$
Ok so I'm having some trouble getting this done. I think I've got the answer but I'm not really sure on how I could verify that the result I got is actually the correct answer.
So here's what the exercise says:
$f(x) = k(frac{1}{5})^{2x+3}$
where a discrete random variable $X = 0,1,2,3,....$
So I know this is a function for a geometric series given that the range for X is infinite.
Here's what I did:
- $sumlimits_{i = 0}^infty k(frac{1}{5})^{2x + 3} = 1$
- $frac{k}{125}sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = 1$
- $frac{k}{125}(frac{1}{1-frac{1}{5}}) = 1$
- $frac{k}{125}(frac{5}{4}) = 1$
- $frac{k}{100} = 1$
- $k = 100$
So how do I know that is ok, I thought about using limits but I'm not sure if that is correct.
probability probability-distributions
probability probability-distributions
asked Sep 30 '15 at 22:22
ArgusArgus
1947
1947
$begingroup$
$sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = sumlimits_{i = 0}^infty (frac{1}{25})^{x} = frac{25}{24}$
$endgroup$
– Henry
Sep 30 '15 at 22:29
add a comment |
$begingroup$
$sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = sumlimits_{i = 0}^infty (frac{1}{25})^{x} = frac{25}{24}$
$endgroup$
– Henry
Sep 30 '15 at 22:29
$begingroup$
$sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = sumlimits_{i = 0}^infty (frac{1}{25})^{x} = frac{25}{24}$
$endgroup$
– Henry
Sep 30 '15 at 22:29
$begingroup$
$sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = sumlimits_{i = 0}^infty (frac{1}{25})^{x} = frac{25}{24}$
$endgroup$
– Henry
Sep 30 '15 at 22:29
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Observe
begin{align}
sum_{X=0}^{infty}kleft(frac{1}{5}right)^{2X+3}&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{5}right)^{2X}\
&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{25}right)^X\
&=frac{k}{125}cdotfrac{1}{1-frac{1}{25}}
end{align}
$endgroup$
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1458741%2ffind-constant-k-with-the-probability-mass-function-of-a-geometric-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe
begin{align}
sum_{X=0}^{infty}kleft(frac{1}{5}right)^{2X+3}&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{5}right)^{2X}\
&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{25}right)^X\
&=frac{k}{125}cdotfrac{1}{1-frac{1}{25}}
end{align}
$endgroup$
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
add a comment |
$begingroup$
Observe
begin{align}
sum_{X=0}^{infty}kleft(frac{1}{5}right)^{2X+3}&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{5}right)^{2X}\
&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{25}right)^X\
&=frac{k}{125}cdotfrac{1}{1-frac{1}{25}}
end{align}
$endgroup$
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
add a comment |
$begingroup$
Observe
begin{align}
sum_{X=0}^{infty}kleft(frac{1}{5}right)^{2X+3}&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{5}right)^{2X}\
&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{25}right)^X\
&=frac{k}{125}cdotfrac{1}{1-frac{1}{25}}
end{align}
$endgroup$
Observe
begin{align}
sum_{X=0}^{infty}kleft(frac{1}{5}right)^{2X+3}&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{5}right)^{2X}\
&=frac{k}{125}sum_{X=0}^{infty}left(frac{1}{25}right)^X\
&=frac{k}{125}cdotfrac{1}{1-frac{1}{25}}
end{align}
answered Sep 30 '15 at 22:27
Ángel Mario GallegosÁngel Mario Gallegos
18.5k11230
18.5k11230
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
add a comment |
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
$begingroup$
Crap, I forgot about that small detail.
$endgroup$
– Argus
Sep 30 '15 at 22:30
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1458741%2ffind-constant-k-with-the-probability-mass-function-of-a-geometric-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$sumlimits_{i = 0}^infty (frac{1}{5})^{2x} = sumlimits_{i = 0}^infty (frac{1}{25})^{x} = frac{25}{24}$
$endgroup$
– Henry
Sep 30 '15 at 22:29