For $(z_n)$ complex, $limsuplimits_nn|z_n-1|$ finite iff $limsuplimits_nn|log(z_n)|$ finite












0












$begingroup$



Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.




There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
    And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.




    There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
      And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.




      There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.










      share|cite|improve this question











      $endgroup$





      Show that for $(z_n)_{ninmathbb N}$ in $mathbb C,$ $$limsuplimits_{n}n|z_n-1|<inftyifflimsuplimits_{n}|nlog(z_n)|<infty$$
      And further that $$limlimits_{n}n(z_n-1)=limlimits_{n}nlog(z_n)$$ if one of the limits exists.




      There is a hint that I should use the logarithmic series $sum_{n=1 } ^{infty } (-frac {1 } {k })^{k-1}(z-1)^k$ about the point $1 $. From which I can derive the inequality $|log(z)-(z-1)|le frac {1 } {2 } |z-1|^2 $for $|z-1|<1$. But here I get stuck.







      sequences-and-series inequality complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 17 '18 at 8:29









      Did

      248k23224462




      248k23224462










      asked Dec 17 '18 at 7:08









      MrFranzénMrFranzén

      9617




      9617






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 11:01












          • $begingroup$
            @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 11:43












          • $begingroup$
            Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 15:44










          • $begingroup$
            @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 23:10





















          1












          $begingroup$

          Hint. First of all
          $$
          limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
          $$

          and
          $$
          {n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
          $$

          Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
          $$
          log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
          $$

          and thus
          $$
          nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
          $$

          and hence
          $$
          |nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
          \ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
          frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 10:13













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043625%2ffor-z-n-complex-limsup-limits-nnz-n-1-finite-iff-limsup-limits-nn-l%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 11:01












          • $begingroup$
            @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 11:43












          • $begingroup$
            Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 15:44










          • $begingroup$
            @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 23:10


















          1












          $begingroup$

          I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 11:01












          • $begingroup$
            @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 11:43












          • $begingroup$
            Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 15:44










          • $begingroup$
            @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 23:10
















          1












          1








          1





          $begingroup$

          I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].






          share|cite|improve this answer











          $endgroup$



          I will give an answer using a slightly modified form of the hint. Here log denotes the principal branch of logarithm. We have $log (z-1)=(z-1)-frac {(z-1)^{2}} 2+frac {(z-1)^{3}} 2cdots$. Hence $|log(z-1)-(z-1)| leq |z-1|^{2}+ |z-1|^{3}+cdots =frac {|z-1|^{2}} {1-|z-1|}$. Note that if any of the limits in the question exist then $z_n to 1$. Hence, for $n$ sufficiently large we have $|z_n-1|<frac 1 2$. This gives $|log(z-1)-(z-1)| < 2|z_n-1|^{2}$ for such $n$. From this it should be fairly easy to draw the desired conclusions. [If $lim sup n|z_n-1|< infty$ there $|z_n-1|leq C/n$ for some constant $C$so $n|z_n-1|^{2} leq n(frac C n)^{2} to 0$ and this gives $|nlog(z_n)| leq n|z_n-1|+2n|z_n-1|^{2}$, etc].







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 17 '18 at 8:20

























          answered Dec 17 '18 at 8:11









          Kavi Rama MurthyKavi Rama Murthy

          60.7k42161




          60.7k42161












          • $begingroup$
            What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 11:01












          • $begingroup$
            @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 11:43












          • $begingroup$
            Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 15:44










          • $begingroup$
            @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 23:10




















          • $begingroup$
            What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 11:01












          • $begingroup$
            @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 11:43












          • $begingroup$
            Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 15:44










          • $begingroup$
            @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
            $endgroup$
            – Kavi Rama Murthy
            Dec 17 '18 at 23:10


















          $begingroup$
          What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
          $endgroup$
          – MrFranzén
          Dec 17 '18 at 11:01






          $begingroup$
          What if $limsup n |log(z_n)| < infty $? As you note this leads to that $z_n to o $ which means $n |z_n-1| to n times infty $. How do I get a stronger bound her?
          $endgroup$
          – MrFranzén
          Dec 17 '18 at 11:01














          $begingroup$
          @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
          $endgroup$
          – Kavi Rama Murthy
          Dec 17 '18 at 11:43






          $begingroup$
          @MrFranzén If $n, log, z_n $ is bounded then $n log ,z_n to 0$ and so $z_n to 1$
          $endgroup$
          – Kavi Rama Murthy
          Dec 17 '18 at 11:43














          $begingroup$
          Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
          $endgroup$
          – MrFranzén
          Dec 17 '18 at 15:44




          $begingroup$
          Yes I'm with you on that but how do $z_n to 1 $ imply $lim sup n|z_n-1| < infty$. As one term decreases but the other increases it does not seem obious that $n|z_n-1| $ converges. How do I show it is bounded?
          $endgroup$
          – MrFranzén
          Dec 17 '18 at 15:44












          $begingroup$
          @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
          $endgroup$
          – Kavi Rama Murthy
          Dec 17 '18 at 23:10






          $begingroup$
          @MrFranzén Use the main inequality I have derived. Use the fact that $nfrac {|z_n-1|^{2}} {1-|z_n-1|} to 0$ if $|z_n-1| <frac 1 2$.
          $endgroup$
          – Kavi Rama Murthy
          Dec 17 '18 at 23:10













          1












          $begingroup$

          Hint. First of all
          $$
          limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
          $$

          and
          $$
          {n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
          $$

          Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
          $$
          log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
          $$

          and thus
          $$
          nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
          $$

          and hence
          $$
          |nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
          \ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
          frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 10:13


















          1












          $begingroup$

          Hint. First of all
          $$
          limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
          $$

          and
          $$
          {n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
          $$

          Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
          $$
          log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
          $$

          and thus
          $$
          nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
          $$

          and hence
          $$
          |nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
          \ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
          frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 10:13
















          1












          1








          1





          $begingroup$

          Hint. First of all
          $$
          limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
          $$

          and
          $$
          {n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
          $$

          Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
          $$
          log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
          $$

          and thus
          $$
          nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
          $$

          and hence
          $$
          |nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
          \ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
          frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
          $$






          share|cite|improve this answer









          $endgroup$



          Hint. First of all
          $$
          limsup n|z_n-1|<infty quadLongleftrightarrowquad {n|z_n-1|},,,text{bounded sequence}
          $$

          and
          $$
          {n|z_n-1|},,,text{bounded} quadLongleftrightarrowquad |z_n-1|<frac{c}{n}, ,,,text{for some $c>0$}.
          $$

          Hence, $|z_n-1|<1/2$, for large enough $n$, i.e., $nge n_0$, which means that $logbig(1+(z_n-1)big)$ is expressible as a power seires
          $$
          log z_n=logbig(1+(z_n-1)big)=(z_n-1)-frac{(z_n-1)^2}{2}+frac{(z_n-1)^3}{3}+cdots
          $$

          and thus
          $$
          nlog z_n=n(z_n-1)-frac{n(z_n-1)^2}{2}+frac{n(z_n-1)^3}{3}+cdots
          $$

          and hence
          $$
          |nlog z_n-n(z_n-1)|lefrac{n|z_n-1|^2}{2}+frac{n|z_n-1|^3}{3}+cdots
          \ =frac{(n|z_n-1|)^2}{2n}+frac{(n|z_n-1|)^3}{3n^2}+cdots \ le
          frac{1}{2ncdot 2^2}+frac{1}{3n^2cdot 2^3}+cdots<frac{1}{n}left(frac{1}{2^2}+frac{1}{2^3}+cdotsright)=frac{1}{2n}
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 17 '18 at 8:49









          Yiorgos S. SmyrlisYiorgos S. Smyrlis

          63.3k1385163




          63.3k1385163












          • $begingroup$
            The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 10:13




















          • $begingroup$
            The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
            $endgroup$
            – MrFranzén
            Dec 17 '18 at 10:13


















          $begingroup$
          The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
          $endgroup$
          – MrFranzén
          Dec 17 '18 at 10:13






          $begingroup$
          The next to last inequality means $n|z_n-1|le 2^{-1} $, why is this so?
          $endgroup$
          – MrFranzén
          Dec 17 '18 at 10:13




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043625%2ffor-z-n-complex-limsup-limits-nnz-n-1-finite-iff-limsup-limits-nn-l%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen