tensorflow - tf.estimator.Estimator write tensor value to tensorboard every step in EVAL mode
I want to write a tensor value after every evaluation step to tensorboard. I call estimator.evaluate(..., steps=3000)
once after finishing training, with a step count covering the whole test set.
I tried:
tf.summary.scalar("mean", mean)
tf.summary.scalar("standard_deviation", standard_deviation)
summary_hook = tf.train.SummarySaverHook(
save_steps=1,
output_dir=self.output_dir + "/eval",
summary_op=tf.summary.merge_all()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, evaluation_hooks=[summary_hook])
&
mean, mean_op = tf.metrics.mean(mean)
standard_deviation, standard_deviation_op = tf.metrics.mean(standard_deviation)
metrics = {
'mean': (mean, mean_op),
'standard_deviation': (standard_deviation, standard_deviation_op),
}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=metrics)
both ways write summaries declared in my model_fn
once per evaluate()
call for the final global training_step.
However, i want to have points written for every step. Is this possible within the estimator API? Neither eval_metric_ops
nor tf.train.SummarySaverHook
seem to be able to achieve this result.
python tensorflow tensorboard tensorflow-estimator
add a comment |
I want to write a tensor value after every evaluation step to tensorboard. I call estimator.evaluate(..., steps=3000)
once after finishing training, with a step count covering the whole test set.
I tried:
tf.summary.scalar("mean", mean)
tf.summary.scalar("standard_deviation", standard_deviation)
summary_hook = tf.train.SummarySaverHook(
save_steps=1,
output_dir=self.output_dir + "/eval",
summary_op=tf.summary.merge_all()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, evaluation_hooks=[summary_hook])
&
mean, mean_op = tf.metrics.mean(mean)
standard_deviation, standard_deviation_op = tf.metrics.mean(standard_deviation)
metrics = {
'mean': (mean, mean_op),
'standard_deviation': (standard_deviation, standard_deviation_op),
}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=metrics)
both ways write summaries declared in my model_fn
once per evaluate()
call for the final global training_step.
However, i want to have points written for every step. Is this possible within the estimator API? Neither eval_metric_ops
nor tf.train.SummarySaverHook
seem to be able to achieve this result.
python tensorflow tensorboard tensorflow-estimator
add a comment |
I want to write a tensor value after every evaluation step to tensorboard. I call estimator.evaluate(..., steps=3000)
once after finishing training, with a step count covering the whole test set.
I tried:
tf.summary.scalar("mean", mean)
tf.summary.scalar("standard_deviation", standard_deviation)
summary_hook = tf.train.SummarySaverHook(
save_steps=1,
output_dir=self.output_dir + "/eval",
summary_op=tf.summary.merge_all()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, evaluation_hooks=[summary_hook])
&
mean, mean_op = tf.metrics.mean(mean)
standard_deviation, standard_deviation_op = tf.metrics.mean(standard_deviation)
metrics = {
'mean': (mean, mean_op),
'standard_deviation': (standard_deviation, standard_deviation_op),
}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=metrics)
both ways write summaries declared in my model_fn
once per evaluate()
call for the final global training_step.
However, i want to have points written for every step. Is this possible within the estimator API? Neither eval_metric_ops
nor tf.train.SummarySaverHook
seem to be able to achieve this result.
python tensorflow tensorboard tensorflow-estimator
I want to write a tensor value after every evaluation step to tensorboard. I call estimator.evaluate(..., steps=3000)
once after finishing training, with a step count covering the whole test set.
I tried:
tf.summary.scalar("mean", mean)
tf.summary.scalar("standard_deviation", standard_deviation)
summary_hook = tf.train.SummarySaverHook(
save_steps=1,
output_dir=self.output_dir + "/eval",
summary_op=tf.summary.merge_all()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, evaluation_hooks=[summary_hook])
&
mean, mean_op = tf.metrics.mean(mean)
standard_deviation, standard_deviation_op = tf.metrics.mean(standard_deviation)
metrics = {
'mean': (mean, mean_op),
'standard_deviation': (standard_deviation, standard_deviation_op),
}
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=metrics)
both ways write summaries declared in my model_fn
once per evaluate()
call for the final global training_step.
However, i want to have points written for every step. Is this possible within the estimator API? Neither eval_metric_ops
nor tf.train.SummarySaverHook
seem to be able to achieve this result.
python tensorflow tensorboard tensorflow-estimator
python tensorflow tensorboard tensorflow-estimator
asked Nov 23 '18 at 17:30
ChocolateChocolate
1391211
1391211
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450869%2ftensorflow-tf-estimator-estimator-write-tensor-value-to-tensorboard-every-step%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450869%2ftensorflow-tf-estimator-estimator-write-tensor-value-to-tensorboard-every-step%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown