Spark watermark and windowing in Append mode












7















Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.





String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();

sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();


Below is complete test code:



public static void main(String  args) throws StreamingQueryException {
SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();

ArrayList<String> rl = new ArrayList<>();
for (int i = 0; i < 200; ++i) {
long t = 1512164314L + i * 5 * 60;
rl.add(t + ",qwer");
}

String nameCol = "name";
String eventTimeCol = "eventTime";
String eventTimestampCol = "eventTimestamp";

MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
Dataset<Row> stream = input.toDF().selectExpr(
"cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
"cast(split(value,'[,]')[1] as String) as " + nameCol);

System.out.println("isStreaming: " + stream.isStreaming());

Column eventTime = functions.to_timestamp(col(eventTimestampCol));
Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);

String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();

sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
}









share|improve this question





























    7















    Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.





    String windowDuration = "24 hours";
    String slideDuration = "15 minutes";
    Dataset<Row> sliding24h = rowData
    .withWatermark(eventTimeCol, slideDuration)
    .groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
    col(nameCol)).count();

    sliding24h
    .writeStream()
    .format("console")
    .option("truncate", false)
    .option("numRows", 1000)
    .outputMode(OutputMode.Append())
    //.outputMode(OutputMode.Complete())
    .start()
    .awaitTermination();


    Below is complete test code:



    public static void main(String  args) throws StreamingQueryException {
    SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();

    ArrayList<String> rl = new ArrayList<>();
    for (int i = 0; i < 200; ++i) {
    long t = 1512164314L + i * 5 * 60;
    rl.add(t + ",qwer");
    }

    String nameCol = "name";
    String eventTimeCol = "eventTime";
    String eventTimestampCol = "eventTimestamp";

    MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
    input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
    Dataset<Row> stream = input.toDF().selectExpr(
    "cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
    "cast(split(value,'[,]')[1] as String) as " + nameCol);

    System.out.println("isStreaming: " + stream.isStreaming());

    Column eventTime = functions.to_timestamp(col(eventTimestampCol));
    Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);

    String windowDuration = "24 hours";
    String slideDuration = "15 minutes";
    Dataset<Row> sliding24h = rowData
    .withWatermark(eventTimeCol, slideDuration)
    .groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
    col(nameCol)).count();

    sliding24h
    .writeStream()
    .format("console")
    .option("truncate", false)
    .option("numRows", 1000)
    .outputMode(OutputMode.Append())
    //.outputMode(OutputMode.Complete())
    .start()
    .awaitTermination();
    }









    share|improve this question



























      7












      7








      7


      2






      Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.





      String windowDuration = "24 hours";
      String slideDuration = "15 minutes";
      Dataset<Row> sliding24h = rowData
      .withWatermark(eventTimeCol, slideDuration)
      .groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
      col(nameCol)).count();

      sliding24h
      .writeStream()
      .format("console")
      .option("truncate", false)
      .option("numRows", 1000)
      .outputMode(OutputMode.Append())
      //.outputMode(OutputMode.Complete())
      .start()
      .awaitTermination();


      Below is complete test code:



      public static void main(String  args) throws StreamingQueryException {
      SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();

      ArrayList<String> rl = new ArrayList<>();
      for (int i = 0; i < 200; ++i) {
      long t = 1512164314L + i * 5 * 60;
      rl.add(t + ",qwer");
      }

      String nameCol = "name";
      String eventTimeCol = "eventTime";
      String eventTimestampCol = "eventTimestamp";

      MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
      input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
      Dataset<Row> stream = input.toDF().selectExpr(
      "cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
      "cast(split(value,'[,]')[1] as String) as " + nameCol);

      System.out.println("isStreaming: " + stream.isStreaming());

      Column eventTime = functions.to_timestamp(col(eventTimestampCol));
      Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);

      String windowDuration = "24 hours";
      String slideDuration = "15 minutes";
      Dataset<Row> sliding24h = rowData
      .withWatermark(eventTimeCol, slideDuration)
      .groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
      col(nameCol)).count();

      sliding24h
      .writeStream()
      .format("console")
      .option("truncate", false)
      .option("numRows", 1000)
      .outputMode(OutputMode.Append())
      //.outputMode(OutputMode.Complete())
      .start()
      .awaitTermination();
      }









      share|improve this question
















      Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.





      String windowDuration = "24 hours";
      String slideDuration = "15 minutes";
      Dataset<Row> sliding24h = rowData
      .withWatermark(eventTimeCol, slideDuration)
      .groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
      col(nameCol)).count();

      sliding24h
      .writeStream()
      .format("console")
      .option("truncate", false)
      .option("numRows", 1000)
      .outputMode(OutputMode.Append())
      //.outputMode(OutputMode.Complete())
      .start()
      .awaitTermination();


      Below is complete test code:



      public static void main(String  args) throws StreamingQueryException {
      SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();

      ArrayList<String> rl = new ArrayList<>();
      for (int i = 0; i < 200; ++i) {
      long t = 1512164314L + i * 5 * 60;
      rl.add(t + ",qwer");
      }

      String nameCol = "name";
      String eventTimeCol = "eventTime";
      String eventTimestampCol = "eventTimestamp";

      MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
      input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
      Dataset<Row> stream = input.toDF().selectExpr(
      "cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
      "cast(split(value,'[,]')[1] as String) as " + nameCol);

      System.out.println("isStreaming: " + stream.isStreaming());

      Column eventTime = functions.to_timestamp(col(eventTimestampCol));
      Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);

      String windowDuration = "24 hours";
      String slideDuration = "15 minutes";
      Dataset<Row> sliding24h = rowData
      .withWatermark(eventTimeCol, slideDuration)
      .groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
      col(nameCol)).count();

      sliding24h
      .writeStream()
      .format("console")
      .option("truncate", false)
      .option("numRows", 1000)
      .outputMode(OutputMode.Append())
      //.outputMode(OutputMode.Complete())
      .start()
      .awaitTermination();
      }






      apache-spark spark-structured-streaming






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 25 '18 at 19:48









      Jacek Laskowski

      44.7k18132268




      44.7k18132268










      asked Nov 23 '18 at 17:35









      dejandejan

      1028




      1028
























          1 Answer
          1






          active

          oldest

          votes


















          1














          This is bug that is been resolved in 2.4.0
          See:
          https://issues.apache.org/jira/browse/SPARK-26167
          https://issues.apache.org/jira/browse/SPARK-24156






          share|improve this answer
























          • I recompiled cove with Spark 2.4.0. Test code produces expected results.

            – dejan
            Nov 27 '18 at 0:07











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450916%2fspark-watermark-and-windowing-in-append-mode%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          This is bug that is been resolved in 2.4.0
          See:
          https://issues.apache.org/jira/browse/SPARK-26167
          https://issues.apache.org/jira/browse/SPARK-24156






          share|improve this answer
























          • I recompiled cove with Spark 2.4.0. Test code produces expected results.

            – dejan
            Nov 27 '18 at 0:07
















          1














          This is bug that is been resolved in 2.4.0
          See:
          https://issues.apache.org/jira/browse/SPARK-26167
          https://issues.apache.org/jira/browse/SPARK-24156






          share|improve this answer
























          • I recompiled cove with Spark 2.4.0. Test code produces expected results.

            – dejan
            Nov 27 '18 at 0:07














          1












          1








          1







          This is bug that is been resolved in 2.4.0
          See:
          https://issues.apache.org/jira/browse/SPARK-26167
          https://issues.apache.org/jira/browse/SPARK-24156






          share|improve this answer













          This is bug that is been resolved in 2.4.0
          See:
          https://issues.apache.org/jira/browse/SPARK-26167
          https://issues.apache.org/jira/browse/SPARK-24156







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 27 '18 at 0:05









          dejandejan

          1028




          1028













          • I recompiled cove with Spark 2.4.0. Test code produces expected results.

            – dejan
            Nov 27 '18 at 0:07



















          • I recompiled cove with Spark 2.4.0. Test code produces expected results.

            – dejan
            Nov 27 '18 at 0:07

















          I recompiled cove with Spark 2.4.0. Test code produces expected results.

          – dejan
          Nov 27 '18 at 0:07





          I recompiled cove with Spark 2.4.0. Test code produces expected results.

          – dejan
          Nov 27 '18 at 0:07




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450916%2fspark-watermark-and-windowing-in-append-mode%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen