Spark watermark and windowing in Append mode
Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
Below is complete test code:
public static void main(String args) throws StreamingQueryException {
SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();
ArrayList<String> rl = new ArrayList<>();
for (int i = 0; i < 200; ++i) {
long t = 1512164314L + i * 5 * 60;
rl.add(t + ",qwer");
}
String nameCol = "name";
String eventTimeCol = "eventTime";
String eventTimestampCol = "eventTimestamp";
MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
Dataset<Row> stream = input.toDF().selectExpr(
"cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
"cast(split(value,'[,]')[1] as String) as " + nameCol);
System.out.println("isStreaming: " + stream.isStreaming());
Column eventTime = functions.to_timestamp(col(eventTimestampCol));
Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
}
apache-spark spark-structured-streaming
add a comment |
Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
Below is complete test code:
public static void main(String args) throws StreamingQueryException {
SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();
ArrayList<String> rl = new ArrayList<>();
for (int i = 0; i < 200; ++i) {
long t = 1512164314L + i * 5 * 60;
rl.add(t + ",qwer");
}
String nameCol = "name";
String eventTimeCol = "eventTime";
String eventTimestampCol = "eventTimestamp";
MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
Dataset<Row> stream = input.toDF().selectExpr(
"cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
"cast(split(value,'[,]')[1] as String) as " + nameCol);
System.out.println("isStreaming: " + stream.isStreaming());
Column eventTime = functions.to_timestamp(col(eventTimestampCol));
Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
}
apache-spark spark-structured-streaming
add a comment |
Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
Below is complete test code:
public static void main(String args) throws StreamingQueryException {
SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();
ArrayList<String> rl = new ArrayList<>();
for (int i = 0; i < 200; ++i) {
long t = 1512164314L + i * 5 * 60;
rl.add(t + ",qwer");
}
String nameCol = "name";
String eventTimeCol = "eventTime";
String eventTimestampCol = "eventTimestamp";
MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
Dataset<Row> stream = input.toDF().selectExpr(
"cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
"cast(split(value,'[,]')[1] as String) as " + nameCol);
System.out.println("isStreaming: " + stream.isStreaming());
Column eventTime = functions.to_timestamp(col(eventTimestampCol));
Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
}
apache-spark spark-structured-streaming
Below structured streaming code watermarks and windows data over 24 hour interval in 15 minute slides. Code produces only empty Batch 0 in Append mode. In Update mode results are correctly displayed. Append mode is needed because S3 sink works only in Append mode.
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
Below is complete test code:
public static void main(String args) throws StreamingQueryException {
SparkSession spark = SparkSession.builder().master("local[*]").getOrCreate();
ArrayList<String> rl = new ArrayList<>();
for (int i = 0; i < 200; ++i) {
long t = 1512164314L + i * 5 * 60;
rl.add(t + ",qwer");
}
String nameCol = "name";
String eventTimeCol = "eventTime";
String eventTimestampCol = "eventTimestamp";
MemoryStream<String> input = new MemoryStream<>(42, spark.sqlContext(), Encoders.STRING());
input.addData(JavaConversions.asScalaBuffer(rl).toSeq());
Dataset<Row> stream = input.toDF().selectExpr(
"cast(split(value,'[,]')[0] as long) as " + eventTimestampCol,
"cast(split(value,'[,]')[1] as String) as " + nameCol);
System.out.println("isStreaming: " + stream.isStreaming());
Column eventTime = functions.to_timestamp(col(eventTimestampCol));
Dataset<Row> rowData = stream.withColumn(eventTimeCol, eventTime);
String windowDuration = "24 hours";
String slideDuration = "15 minutes";
Dataset<Row> sliding24h = rowData
.withWatermark(eventTimeCol, slideDuration)
.groupBy(functions.window(col(eventTimeCol), windowDuration, slideDuration),
col(nameCol)).count();
sliding24h
.writeStream()
.format("console")
.option("truncate", false)
.option("numRows", 1000)
.outputMode(OutputMode.Append())
//.outputMode(OutputMode.Complete())
.start()
.awaitTermination();
}
apache-spark spark-structured-streaming
apache-spark spark-structured-streaming
edited Nov 25 '18 at 19:48
Jacek Laskowski
44.7k18132268
44.7k18132268
asked Nov 23 '18 at 17:35
dejandejan
1028
1028
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
This is bug that is been resolved in 2.4.0
See:
https://issues.apache.org/jira/browse/SPARK-26167
https://issues.apache.org/jira/browse/SPARK-24156
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450916%2fspark-watermark-and-windowing-in-append-mode%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This is bug that is been resolved in 2.4.0
See:
https://issues.apache.org/jira/browse/SPARK-26167
https://issues.apache.org/jira/browse/SPARK-24156
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
add a comment |
This is bug that is been resolved in 2.4.0
See:
https://issues.apache.org/jira/browse/SPARK-26167
https://issues.apache.org/jira/browse/SPARK-24156
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
add a comment |
This is bug that is been resolved in 2.4.0
See:
https://issues.apache.org/jira/browse/SPARK-26167
https://issues.apache.org/jira/browse/SPARK-24156
This is bug that is been resolved in 2.4.0
See:
https://issues.apache.org/jira/browse/SPARK-26167
https://issues.apache.org/jira/browse/SPARK-24156
answered Nov 27 '18 at 0:05
dejandejan
1028
1028
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
add a comment |
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
I recompiled cove with Spark 2.4.0. Test code produces expected results.
– dejan
Nov 27 '18 at 0:07
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53450916%2fspark-watermark-and-windowing-in-append-mode%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown