Overdetermined linear system?












1












$begingroup$


What should be the conditions on coefficients $a_i$ and $b_i$ such that the following overdetermined linear system of equations has unique solution.
$$a_i x+y=b_i$$
where $i=1,2,3...,n$.



The system represents $n$ straight lines and it is possible to make them ins
tersect at one point, hence sytem must have a unique solution for some $a_i,b_i$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Where is $b_i$ in your equation?
    $endgroup$
    – induction601
    Dec 17 '18 at 6:35










  • $begingroup$
    Typo! Fixed. Sorry
    $endgroup$
    – ersh
    Dec 17 '18 at 6:42
















1












$begingroup$


What should be the conditions on coefficients $a_i$ and $b_i$ such that the following overdetermined linear system of equations has unique solution.
$$a_i x+y=b_i$$
where $i=1,2,3...,n$.



The system represents $n$ straight lines and it is possible to make them ins
tersect at one point, hence sytem must have a unique solution for some $a_i,b_i$.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Where is $b_i$ in your equation?
    $endgroup$
    – induction601
    Dec 17 '18 at 6:35










  • $begingroup$
    Typo! Fixed. Sorry
    $endgroup$
    – ersh
    Dec 17 '18 at 6:42














1












1








1





$begingroup$


What should be the conditions on coefficients $a_i$ and $b_i$ such that the following overdetermined linear system of equations has unique solution.
$$a_i x+y=b_i$$
where $i=1,2,3...,n$.



The system represents $n$ straight lines and it is possible to make them ins
tersect at one point, hence sytem must have a unique solution for some $a_i,b_i$.










share|cite|improve this question











$endgroup$




What should be the conditions on coefficients $a_i$ and $b_i$ such that the following overdetermined linear system of equations has unique solution.
$$a_i x+y=b_i$$
where $i=1,2,3...,n$.



The system represents $n$ straight lines and it is possible to make them ins
tersect at one point, hence sytem must have a unique solution for some $a_i,b_i$.







linear-algebra systems-of-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 6:41







ersh

















asked Dec 17 '18 at 6:30









ershersh

408113




408113












  • $begingroup$
    Where is $b_i$ in your equation?
    $endgroup$
    – induction601
    Dec 17 '18 at 6:35










  • $begingroup$
    Typo! Fixed. Sorry
    $endgroup$
    – ersh
    Dec 17 '18 at 6:42


















  • $begingroup$
    Where is $b_i$ in your equation?
    $endgroup$
    – induction601
    Dec 17 '18 at 6:35










  • $begingroup$
    Typo! Fixed. Sorry
    $endgroup$
    – ersh
    Dec 17 '18 at 6:42
















$begingroup$
Where is $b_i$ in your equation?
$endgroup$
– induction601
Dec 17 '18 at 6:35




$begingroup$
Where is $b_i$ in your equation?
$endgroup$
– induction601
Dec 17 '18 at 6:35












$begingroup$
Typo! Fixed. Sorry
$endgroup$
– ersh
Dec 17 '18 at 6:42




$begingroup$
Typo! Fixed. Sorry
$endgroup$
– ersh
Dec 17 '18 at 6:42










1 Answer
1






active

oldest

votes


















1












$begingroup$

The system is over-determined for $n>2$ but here is a general method. We can write the augmented matrix for the system $Abegin{bmatrix}x\yend{bmatrix}=B$ as under:



$begin{bmatrix}a_1&1&Big|&b_1\a_2&1&Big|&b_2\vdots&vdots&Big|&vdots\a_n&1&Big|&b_nend{bmatrix}$



For a unique solution to exist, we should have $2$ linearly-independent equations to solve for the $2$ unknowns. In other words, the rank of the coefficient and augmented matrices should be $2$. Recall that no more than $2$ vectors in $Bbb R^2$ can be linearly independent, so the rank of the coefficient matrix $A, text{rank}(A)le2$. For $text{rank}(A)=2$, we need to ensure at-least two $a_i$ are distinct. Say we have distinct $a_1ne0,a_2ne a_1$.



The point of intersection of $a_1x+y=b_1,a_2x+y=b_2$ is given by $(X,Y)=displaystyleBig(frac{b_1-b_2}{a_1-a_2},frac{a_1b_2-a_2b_1}{a_1-a_2}Big)$.



$displaystyle R_ito R_i-frac{a_i}{a_1}cdot R_1, i>1$



$displaystyle R_jto R_j-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdot R_2, j>2$



$simbegin{bmatrix}a_1&1&Big|&b_1\0&1-frac{a_2}{a_1}&Big|&b_2-frac{a_2}{a_1}cdot b_1\0&0&Big|&b'_3\vdots&vdots&Big|&vdots\0&0&Big|&b'_nend{bmatrix}$



$displaystyle b'_i=b_i-frac{a_i}{a_1}cdot b_1-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdotBig[b_2-frac{a_2}{a_1}cdot b_1Big] forall i>2$



For the rank of the augmented matrix to be $0$, we require $b'_i=0$



$displaystyletherefore b_i=frac{(a_i-a_2)b_1+(a_1-a_i)b_2}{a_1-a_2}=Big[frac{b_1-b_2}{a_1-a_2}Big]cdot a_i+Big(frac{a_1b_2-a_2b_1}{a_1-a_2}Big), forall i>2$




Therefore, if:




  • There are two lines $L_i,L_j$ not parallel to each other $(a_ine a_j)$ intersecting at $(X,Y)$;


  • $displaystyle b_k=Big[frac{b_i-b_j}{a_i-a_j}Big]cdot a_k+Big(frac{a_ib_j-a_jb_i}{a_i-a_j}Big)=Xa_k+Y, forall kne i,j$; that is, $(X,Y)$ lies on all the remaining lines;



Then, the straight lines $L_i:= a_ix+y=b_i,iin{1,2,...,n}$ intersect at the point $displaystyle(X,Y)=Big(frac{b_i-b_j}{a_i-a_j},frac{a_ib_j-a_jb_i}{a_i-a_j}Big)$ uniquely.







share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043601%2foverdetermined-linear-system%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The system is over-determined for $n>2$ but here is a general method. We can write the augmented matrix for the system $Abegin{bmatrix}x\yend{bmatrix}=B$ as under:



    $begin{bmatrix}a_1&1&Big|&b_1\a_2&1&Big|&b_2\vdots&vdots&Big|&vdots\a_n&1&Big|&b_nend{bmatrix}$



    For a unique solution to exist, we should have $2$ linearly-independent equations to solve for the $2$ unknowns. In other words, the rank of the coefficient and augmented matrices should be $2$. Recall that no more than $2$ vectors in $Bbb R^2$ can be linearly independent, so the rank of the coefficient matrix $A, text{rank}(A)le2$. For $text{rank}(A)=2$, we need to ensure at-least two $a_i$ are distinct. Say we have distinct $a_1ne0,a_2ne a_1$.



    The point of intersection of $a_1x+y=b_1,a_2x+y=b_2$ is given by $(X,Y)=displaystyleBig(frac{b_1-b_2}{a_1-a_2},frac{a_1b_2-a_2b_1}{a_1-a_2}Big)$.



    $displaystyle R_ito R_i-frac{a_i}{a_1}cdot R_1, i>1$



    $displaystyle R_jto R_j-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdot R_2, j>2$



    $simbegin{bmatrix}a_1&1&Big|&b_1\0&1-frac{a_2}{a_1}&Big|&b_2-frac{a_2}{a_1}cdot b_1\0&0&Big|&b'_3\vdots&vdots&Big|&vdots\0&0&Big|&b'_nend{bmatrix}$



    $displaystyle b'_i=b_i-frac{a_i}{a_1}cdot b_1-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdotBig[b_2-frac{a_2}{a_1}cdot b_1Big] forall i>2$



    For the rank of the augmented matrix to be $0$, we require $b'_i=0$



    $displaystyletherefore b_i=frac{(a_i-a_2)b_1+(a_1-a_i)b_2}{a_1-a_2}=Big[frac{b_1-b_2}{a_1-a_2}Big]cdot a_i+Big(frac{a_1b_2-a_2b_1}{a_1-a_2}Big), forall i>2$




    Therefore, if:




    • There are two lines $L_i,L_j$ not parallel to each other $(a_ine a_j)$ intersecting at $(X,Y)$;


    • $displaystyle b_k=Big[frac{b_i-b_j}{a_i-a_j}Big]cdot a_k+Big(frac{a_ib_j-a_jb_i}{a_i-a_j}Big)=Xa_k+Y, forall kne i,j$; that is, $(X,Y)$ lies on all the remaining lines;



    Then, the straight lines $L_i:= a_ix+y=b_i,iin{1,2,...,n}$ intersect at the point $displaystyle(X,Y)=Big(frac{b_i-b_j}{a_i-a_j},frac{a_ib_j-a_jb_i}{a_i-a_j}Big)$ uniquely.







    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      The system is over-determined for $n>2$ but here is a general method. We can write the augmented matrix for the system $Abegin{bmatrix}x\yend{bmatrix}=B$ as under:



      $begin{bmatrix}a_1&1&Big|&b_1\a_2&1&Big|&b_2\vdots&vdots&Big|&vdots\a_n&1&Big|&b_nend{bmatrix}$



      For a unique solution to exist, we should have $2$ linearly-independent equations to solve for the $2$ unknowns. In other words, the rank of the coefficient and augmented matrices should be $2$. Recall that no more than $2$ vectors in $Bbb R^2$ can be linearly independent, so the rank of the coefficient matrix $A, text{rank}(A)le2$. For $text{rank}(A)=2$, we need to ensure at-least two $a_i$ are distinct. Say we have distinct $a_1ne0,a_2ne a_1$.



      The point of intersection of $a_1x+y=b_1,a_2x+y=b_2$ is given by $(X,Y)=displaystyleBig(frac{b_1-b_2}{a_1-a_2},frac{a_1b_2-a_2b_1}{a_1-a_2}Big)$.



      $displaystyle R_ito R_i-frac{a_i}{a_1}cdot R_1, i>1$



      $displaystyle R_jto R_j-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdot R_2, j>2$



      $simbegin{bmatrix}a_1&1&Big|&b_1\0&1-frac{a_2}{a_1}&Big|&b_2-frac{a_2}{a_1}cdot b_1\0&0&Big|&b'_3\vdots&vdots&Big|&vdots\0&0&Big|&b'_nend{bmatrix}$



      $displaystyle b'_i=b_i-frac{a_i}{a_1}cdot b_1-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdotBig[b_2-frac{a_2}{a_1}cdot b_1Big] forall i>2$



      For the rank of the augmented matrix to be $0$, we require $b'_i=0$



      $displaystyletherefore b_i=frac{(a_i-a_2)b_1+(a_1-a_i)b_2}{a_1-a_2}=Big[frac{b_1-b_2}{a_1-a_2}Big]cdot a_i+Big(frac{a_1b_2-a_2b_1}{a_1-a_2}Big), forall i>2$




      Therefore, if:




      • There are two lines $L_i,L_j$ not parallel to each other $(a_ine a_j)$ intersecting at $(X,Y)$;


      • $displaystyle b_k=Big[frac{b_i-b_j}{a_i-a_j}Big]cdot a_k+Big(frac{a_ib_j-a_jb_i}{a_i-a_j}Big)=Xa_k+Y, forall kne i,j$; that is, $(X,Y)$ lies on all the remaining lines;



      Then, the straight lines $L_i:= a_ix+y=b_i,iin{1,2,...,n}$ intersect at the point $displaystyle(X,Y)=Big(frac{b_i-b_j}{a_i-a_j},frac{a_ib_j-a_jb_i}{a_i-a_j}Big)$ uniquely.







      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        The system is over-determined for $n>2$ but here is a general method. We can write the augmented matrix for the system $Abegin{bmatrix}x\yend{bmatrix}=B$ as under:



        $begin{bmatrix}a_1&1&Big|&b_1\a_2&1&Big|&b_2\vdots&vdots&Big|&vdots\a_n&1&Big|&b_nend{bmatrix}$



        For a unique solution to exist, we should have $2$ linearly-independent equations to solve for the $2$ unknowns. In other words, the rank of the coefficient and augmented matrices should be $2$. Recall that no more than $2$ vectors in $Bbb R^2$ can be linearly independent, so the rank of the coefficient matrix $A, text{rank}(A)le2$. For $text{rank}(A)=2$, we need to ensure at-least two $a_i$ are distinct. Say we have distinct $a_1ne0,a_2ne a_1$.



        The point of intersection of $a_1x+y=b_1,a_2x+y=b_2$ is given by $(X,Y)=displaystyleBig(frac{b_1-b_2}{a_1-a_2},frac{a_1b_2-a_2b_1}{a_1-a_2}Big)$.



        $displaystyle R_ito R_i-frac{a_i}{a_1}cdot R_1, i>1$



        $displaystyle R_jto R_j-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdot R_2, j>2$



        $simbegin{bmatrix}a_1&1&Big|&b_1\0&1-frac{a_2}{a_1}&Big|&b_2-frac{a_2}{a_1}cdot b_1\0&0&Big|&b'_3\vdots&vdots&Big|&vdots\0&0&Big|&b'_nend{bmatrix}$



        $displaystyle b'_i=b_i-frac{a_i}{a_1}cdot b_1-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdotBig[b_2-frac{a_2}{a_1}cdot b_1Big] forall i>2$



        For the rank of the augmented matrix to be $0$, we require $b'_i=0$



        $displaystyletherefore b_i=frac{(a_i-a_2)b_1+(a_1-a_i)b_2}{a_1-a_2}=Big[frac{b_1-b_2}{a_1-a_2}Big]cdot a_i+Big(frac{a_1b_2-a_2b_1}{a_1-a_2}Big), forall i>2$




        Therefore, if:




        • There are two lines $L_i,L_j$ not parallel to each other $(a_ine a_j)$ intersecting at $(X,Y)$;


        • $displaystyle b_k=Big[frac{b_i-b_j}{a_i-a_j}Big]cdot a_k+Big(frac{a_ib_j-a_jb_i}{a_i-a_j}Big)=Xa_k+Y, forall kne i,j$; that is, $(X,Y)$ lies on all the remaining lines;



        Then, the straight lines $L_i:= a_ix+y=b_i,iin{1,2,...,n}$ intersect at the point $displaystyle(X,Y)=Big(frac{b_i-b_j}{a_i-a_j},frac{a_ib_j-a_jb_i}{a_i-a_j}Big)$ uniquely.







        share|cite|improve this answer











        $endgroup$



        The system is over-determined for $n>2$ but here is a general method. We can write the augmented matrix for the system $Abegin{bmatrix}x\yend{bmatrix}=B$ as under:



        $begin{bmatrix}a_1&1&Big|&b_1\a_2&1&Big|&b_2\vdots&vdots&Big|&vdots\a_n&1&Big|&b_nend{bmatrix}$



        For a unique solution to exist, we should have $2$ linearly-independent equations to solve for the $2$ unknowns. In other words, the rank of the coefficient and augmented matrices should be $2$. Recall that no more than $2$ vectors in $Bbb R^2$ can be linearly independent, so the rank of the coefficient matrix $A, text{rank}(A)le2$. For $text{rank}(A)=2$, we need to ensure at-least two $a_i$ are distinct. Say we have distinct $a_1ne0,a_2ne a_1$.



        The point of intersection of $a_1x+y=b_1,a_2x+y=b_2$ is given by $(X,Y)=displaystyleBig(frac{b_1-b_2}{a_1-a_2},frac{a_1b_2-a_2b_1}{a_1-a_2}Big)$.



        $displaystyle R_ito R_i-frac{a_i}{a_1}cdot R_1, i>1$



        $displaystyle R_jto R_j-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdot R_2, j>2$



        $simbegin{bmatrix}a_1&1&Big|&b_1\0&1-frac{a_2}{a_1}&Big|&b_2-frac{a_2}{a_1}cdot b_1\0&0&Big|&b'_3\vdots&vdots&Big|&vdots\0&0&Big|&b'_nend{bmatrix}$



        $displaystyle b'_i=b_i-frac{a_i}{a_1}cdot b_1-frac{1-frac{a_i}{a_1}}{1-frac{a_2}{a_1}}cdotBig[b_2-frac{a_2}{a_1}cdot b_1Big] forall i>2$



        For the rank of the augmented matrix to be $0$, we require $b'_i=0$



        $displaystyletherefore b_i=frac{(a_i-a_2)b_1+(a_1-a_i)b_2}{a_1-a_2}=Big[frac{b_1-b_2}{a_1-a_2}Big]cdot a_i+Big(frac{a_1b_2-a_2b_1}{a_1-a_2}Big), forall i>2$




        Therefore, if:




        • There are two lines $L_i,L_j$ not parallel to each other $(a_ine a_j)$ intersecting at $(X,Y)$;


        • $displaystyle b_k=Big[frac{b_i-b_j}{a_i-a_j}Big]cdot a_k+Big(frac{a_ib_j-a_jb_i}{a_i-a_j}Big)=Xa_k+Y, forall kne i,j$; that is, $(X,Y)$ lies on all the remaining lines;



        Then, the straight lines $L_i:= a_ix+y=b_i,iin{1,2,...,n}$ intersect at the point $displaystyle(X,Y)=Big(frac{b_i-b_j}{a_i-a_j},frac{a_ib_j-a_jb_i}{a_i-a_j}Big)$ uniquely.








        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 17 '18 at 13:02

























        answered Dec 17 '18 at 8:07









        Shubham JohriShubham Johri

        5,192717




        5,192717






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043601%2foverdetermined-linear-system%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen