Find $lim_{x to 0} (sin x)^{1/x} + (1/x)^{sin x}$
$begingroup$
Evaluate the limit $lim_{x to 0} (sin x)^{1/x} + (1/x)^{sin x}$
This limit is of the form $(0)^{infty} + {infty}^{0}$
I tried to calculate both limits individually, and got confused if the first term is an indeterminate form of not. If it is not, then this value is $0$ and second term is $1$.
But if first term is an indeterminate form then how would i calculate the limit?
calculus
$endgroup$
add a comment |
$begingroup$
Evaluate the limit $lim_{x to 0} (sin x)^{1/x} + (1/x)^{sin x}$
This limit is of the form $(0)^{infty} + {infty}^{0}$
I tried to calculate both limits individually, and got confused if the first term is an indeterminate form of not. If it is not, then this value is $0$ and second term is $1$.
But if first term is an indeterminate form then how would i calculate the limit?
calculus
$endgroup$
1
$begingroup$
Is $x$ meant to tend to $0$ rather than $infty$? Maybe $0^+$?
$endgroup$
– Olivier Moschetta
Jan 3 at 14:33
$begingroup$
I believe it should be $xto 0^+$ as pointed out by @OlivierMoschetta, otherwise the limit does not exist
$endgroup$
– roman
Jan 3 at 14:54
$begingroup$
Yea it's 0. Sorry for inconvenience.
$endgroup$
– Mathsaddict
Jan 3 at 15:04
add a comment |
$begingroup$
Evaluate the limit $lim_{x to 0} (sin x)^{1/x} + (1/x)^{sin x}$
This limit is of the form $(0)^{infty} + {infty}^{0}$
I tried to calculate both limits individually, and got confused if the first term is an indeterminate form of not. If it is not, then this value is $0$ and second term is $1$.
But if first term is an indeterminate form then how would i calculate the limit?
calculus
$endgroup$
Evaluate the limit $lim_{x to 0} (sin x)^{1/x} + (1/x)^{sin x}$
This limit is of the form $(0)^{infty} + {infty}^{0}$
I tried to calculate both limits individually, and got confused if the first term is an indeterminate form of not. If it is not, then this value is $0$ and second term is $1$.
But if first term is an indeterminate form then how would i calculate the limit?
calculus
calculus
edited Jan 3 at 14:54
Mathsaddict
asked Jan 3 at 14:06
MathsaddictMathsaddict
3669
3669
1
$begingroup$
Is $x$ meant to tend to $0$ rather than $infty$? Maybe $0^+$?
$endgroup$
– Olivier Moschetta
Jan 3 at 14:33
$begingroup$
I believe it should be $xto 0^+$ as pointed out by @OlivierMoschetta, otherwise the limit does not exist
$endgroup$
– roman
Jan 3 at 14:54
$begingroup$
Yea it's 0. Sorry for inconvenience.
$endgroup$
– Mathsaddict
Jan 3 at 15:04
add a comment |
1
$begingroup$
Is $x$ meant to tend to $0$ rather than $infty$? Maybe $0^+$?
$endgroup$
– Olivier Moschetta
Jan 3 at 14:33
$begingroup$
I believe it should be $xto 0^+$ as pointed out by @OlivierMoschetta, otherwise the limit does not exist
$endgroup$
– roman
Jan 3 at 14:54
$begingroup$
Yea it's 0. Sorry for inconvenience.
$endgroup$
– Mathsaddict
Jan 3 at 15:04
1
1
$begingroup$
Is $x$ meant to tend to $0$ rather than $infty$? Maybe $0^+$?
$endgroup$
– Olivier Moschetta
Jan 3 at 14:33
$begingroup$
Is $x$ meant to tend to $0$ rather than $infty$? Maybe $0^+$?
$endgroup$
– Olivier Moschetta
Jan 3 at 14:33
$begingroup$
I believe it should be $xto 0^+$ as pointed out by @OlivierMoschetta, otherwise the limit does not exist
$endgroup$
– roman
Jan 3 at 14:54
$begingroup$
I believe it should be $xto 0^+$ as pointed out by @OlivierMoschetta, otherwise the limit does not exist
$endgroup$
– roman
Jan 3 at 14:54
$begingroup$
Yea it's 0. Sorry for inconvenience.
$endgroup$
– Mathsaddict
Jan 3 at 15:04
$begingroup$
Yea it's 0. Sorry for inconvenience.
$endgroup$
– Mathsaddict
Jan 3 at 15:04
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I'm assuming $xrightarrow 0^+$ rather than $xrightarrowinfty$. The first limit is not an indeterminate form, but here is a direct calculation anyway.
Assume $0<x<1$ so that $1/x>1$. For every $ain ]0,1[$ we then have
$$0<a^{1/x}<a$$
(recall for instance that $a^3<a^2$ for such $a$), in particular if $a=sin(x)$:
$$0<sin(x)^{1/x}leqsin(x)$$
By the squeeze theorem we obtain
$$lim_{xrightarrow 0^+}sin(x)^{1/x}=0$$
$endgroup$
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
add a comment |
$begingroup$
$$
L = lim_{xto 0^+} left((sin x)^{1over x} + left({1over x}right)^{sin x}right) \
= lim_{xto 0^+} frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}}
$$
By $sin x sim x$ as $xto 0$:
$$
frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}} sim frac{x^{1over x}x^x + 1}{x^x} = frac{x^{x+{1over x}}+ 1}{x^x}
$$
By the fact that $lim_{xto 0^+} x^x = 1$:
$$
begin{align}
lim_{xto 0^+} frac{x^{x+{1over x}}+ 1}{x^x} &= lim_{xto 0^+} left(x^{x+{1over x}} + 1right) \
&= 1+ lim_{xto 0^+} x^x cdot x^{1over x} \
&= 1 + lim_{xto 0^+}x^x cdot lim_{xto 0^+} sqrt[x]{x}\
&= 1 + 1cdot 0 = 1
end{align}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060578%2ffind-lim-x-to-0-sin-x1-x-1-x-sin-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I'm assuming $xrightarrow 0^+$ rather than $xrightarrowinfty$. The first limit is not an indeterminate form, but here is a direct calculation anyway.
Assume $0<x<1$ so that $1/x>1$. For every $ain ]0,1[$ we then have
$$0<a^{1/x}<a$$
(recall for instance that $a^3<a^2$ for such $a$), in particular if $a=sin(x)$:
$$0<sin(x)^{1/x}leqsin(x)$$
By the squeeze theorem we obtain
$$lim_{xrightarrow 0^+}sin(x)^{1/x}=0$$
$endgroup$
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
add a comment |
$begingroup$
I'm assuming $xrightarrow 0^+$ rather than $xrightarrowinfty$. The first limit is not an indeterminate form, but here is a direct calculation anyway.
Assume $0<x<1$ so that $1/x>1$. For every $ain ]0,1[$ we then have
$$0<a^{1/x}<a$$
(recall for instance that $a^3<a^2$ for such $a$), in particular if $a=sin(x)$:
$$0<sin(x)^{1/x}leqsin(x)$$
By the squeeze theorem we obtain
$$lim_{xrightarrow 0^+}sin(x)^{1/x}=0$$
$endgroup$
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
add a comment |
$begingroup$
I'm assuming $xrightarrow 0^+$ rather than $xrightarrowinfty$. The first limit is not an indeterminate form, but here is a direct calculation anyway.
Assume $0<x<1$ so that $1/x>1$. For every $ain ]0,1[$ we then have
$$0<a^{1/x}<a$$
(recall for instance that $a^3<a^2$ for such $a$), in particular if $a=sin(x)$:
$$0<sin(x)^{1/x}leqsin(x)$$
By the squeeze theorem we obtain
$$lim_{xrightarrow 0^+}sin(x)^{1/x}=0$$
$endgroup$
I'm assuming $xrightarrow 0^+$ rather than $xrightarrowinfty$. The first limit is not an indeterminate form, but here is a direct calculation anyway.
Assume $0<x<1$ so that $1/x>1$. For every $ain ]0,1[$ we then have
$$0<a^{1/x}<a$$
(recall for instance that $a^3<a^2$ for such $a$), in particular if $a=sin(x)$:
$$0<sin(x)^{1/x}leqsin(x)$$
By the squeeze theorem we obtain
$$lim_{xrightarrow 0^+}sin(x)^{1/x}=0$$
answered Jan 3 at 14:43
Olivier MoschettaOlivier Moschetta
2,8311411
2,8311411
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
add a comment |
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
First term is not indeterminate. Why? When $x to 0$ $sin x to 0$ and $1/x to infty$ this should be $0^{infty}$ indeterminate form.
$endgroup$
– Mathsaddict
Jan 3 at 15:18
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
$begingroup$
You can adapt my calculations to prove that if $f(x)rightarrow 0$ and $g(x)rightarrowinfty$ then $f(x)^{g(x)}rightarrow 0$. Essentially $g(x)>1$ and $|f(x)|<1$ if $x$ is small enough so that $|f(x)|^{g(x)}leq |f(x)|rightarrow 0$.
$endgroup$
– Olivier Moschetta
Jan 3 at 15:25
add a comment |
$begingroup$
$$
L = lim_{xto 0^+} left((sin x)^{1over x} + left({1over x}right)^{sin x}right) \
= lim_{xto 0^+} frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}}
$$
By $sin x sim x$ as $xto 0$:
$$
frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}} sim frac{x^{1over x}x^x + 1}{x^x} = frac{x^{x+{1over x}}+ 1}{x^x}
$$
By the fact that $lim_{xto 0^+} x^x = 1$:
$$
begin{align}
lim_{xto 0^+} frac{x^{x+{1over x}}+ 1}{x^x} &= lim_{xto 0^+} left(x^{x+{1over x}} + 1right) \
&= 1+ lim_{xto 0^+} x^x cdot x^{1over x} \
&= 1 + lim_{xto 0^+}x^x cdot lim_{xto 0^+} sqrt[x]{x}\
&= 1 + 1cdot 0 = 1
end{align}
$$
$endgroup$
add a comment |
$begingroup$
$$
L = lim_{xto 0^+} left((sin x)^{1over x} + left({1over x}right)^{sin x}right) \
= lim_{xto 0^+} frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}}
$$
By $sin x sim x$ as $xto 0$:
$$
frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}} sim frac{x^{1over x}x^x + 1}{x^x} = frac{x^{x+{1over x}}+ 1}{x^x}
$$
By the fact that $lim_{xto 0^+} x^x = 1$:
$$
begin{align}
lim_{xto 0^+} frac{x^{x+{1over x}}+ 1}{x^x} &= lim_{xto 0^+} left(x^{x+{1over x}} + 1right) \
&= 1+ lim_{xto 0^+} x^x cdot x^{1over x} \
&= 1 + lim_{xto 0^+}x^x cdot lim_{xto 0^+} sqrt[x]{x}\
&= 1 + 1cdot 0 = 1
end{align}
$$
$endgroup$
add a comment |
$begingroup$
$$
L = lim_{xto 0^+} left((sin x)^{1over x} + left({1over x}right)^{sin x}right) \
= lim_{xto 0^+} frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}}
$$
By $sin x sim x$ as $xto 0$:
$$
frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}} sim frac{x^{1over x}x^x + 1}{x^x} = frac{x^{x+{1over x}}+ 1}{x^x}
$$
By the fact that $lim_{xto 0^+} x^x = 1$:
$$
begin{align}
lim_{xto 0^+} frac{x^{x+{1over x}}+ 1}{x^x} &= lim_{xto 0^+} left(x^{x+{1over x}} + 1right) \
&= 1+ lim_{xto 0^+} x^x cdot x^{1over x} \
&= 1 + lim_{xto 0^+}x^x cdot lim_{xto 0^+} sqrt[x]{x}\
&= 1 + 1cdot 0 = 1
end{align}
$$
$endgroup$
$$
L = lim_{xto 0^+} left((sin x)^{1over x} + left({1over x}right)^{sin x}right) \
= lim_{xto 0^+} frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}}
$$
By $sin x sim x$ as $xto 0$:
$$
frac{(sin x)^{1over x}cdot x^{sin x} + 1}{x^{sin x}} sim frac{x^{1over x}x^x + 1}{x^x} = frac{x^{x+{1over x}}+ 1}{x^x}
$$
By the fact that $lim_{xto 0^+} x^x = 1$:
$$
begin{align}
lim_{xto 0^+} frac{x^{x+{1over x}}+ 1}{x^x} &= lim_{xto 0^+} left(x^{x+{1over x}} + 1right) \
&= 1+ lim_{xto 0^+} x^x cdot x^{1over x} \
&= 1 + lim_{xto 0^+}x^x cdot lim_{xto 0^+} sqrt[x]{x}\
&= 1 + 1cdot 0 = 1
end{align}
$$
answered Jan 3 at 14:55
romanroman
2,42721226
2,42721226
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060578%2ffind-lim-x-to-0-sin-x1-x-1-x-sin-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Is $x$ meant to tend to $0$ rather than $infty$? Maybe $0^+$?
$endgroup$
– Olivier Moschetta
Jan 3 at 14:33
$begingroup$
I believe it should be $xto 0^+$ as pointed out by @OlivierMoschetta, otherwise the limit does not exist
$endgroup$
– roman
Jan 3 at 14:54
$begingroup$
Yea it's 0. Sorry for inconvenience.
$endgroup$
– Mathsaddict
Jan 3 at 15:04