On calculating the limit of the infinite product $prod_{k=3}^n (1-tan^4frac{pi}{2^k})$
$begingroup$
Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?
What I attempted:-
$log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.
Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$
Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $
Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.
Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$
Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?
What I attempted:-
$log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.
Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$
Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $
Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.
Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$
Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?
What I attempted:-
$log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.
Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$
Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $
Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.
Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$
Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.
sequences-and-series
$endgroup$
Let $S_n=prod_{k=3}^n (1-tan^4frac{pi}{2^k})$. What is the value of $lim_{n to infty} S_n$ ?
What I attempted:-
$log S_n=sum_{k=3}^n log (1-tan^4frac{pi}{2^k})$.
Since $lim_{x to 0} frac{tan x}{x}=1$, $tan^4frac{pi}{2^k}approx left(frac{pi}{2^k}right)^4$
Thus, $log S_n=sum_{k=3}^n log (1-frac{pi^4}{2^{4k}})approx sum_{k=3}^nleft( -frac{pi^4}{2^{4k}}right) $
Taking limit as $n to infty$, $lim_{n to infty} log S_n=frac{-pi^4}{3840}$.
Finally, $lim_{n to infty}S_n=e^{frac{-pi^4}{3840}}approx 1-frac{pi^4}{3840}$
Am I correct? Is there any other better method which yield the accurate limit? I was told that the exact limit should be one of the $4$ options:- $frac{pi^3}{4},frac{pi^3}{16}, frac{pi^3}{32},frac{pi^3}{256}$. I guess the third option is correct as it is giving almost the same value that I have obtained.
sequences-and-series
sequences-and-series
edited Jan 3 at 16:52
Robert Z
101k1071144
101k1071144
asked Jan 3 at 15:39
user440191
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You obtained an approximation of the exact value. In order to find such exact vale, note that
$$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$
Hence, as $n$ goes to infinity,
$$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
where we used the known fact that
$$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
frac{1}{2^{n-1}sin(pi/2^n)}$$
(see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).
$endgroup$
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
add a comment |
$begingroup$
What you're describing is how to arrive at an approximation of the actual product.
But you can compute the exact value for the product using trigonometric identities.
$$begin{split}
S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
&=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
&=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
&=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
&= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
&=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
end{split}$$
Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
you can verify that, for any $0<theta<pi$,
$$
prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
$$
Which yields, for $theta=frac pi 4$,
$$
prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
$$
So finally,
$$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
In other words,
$$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060690%2fon-calculating-the-limit-of-the-infinite-product-prod-k-3n-1-tan4-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You obtained an approximation of the exact value. In order to find such exact vale, note that
$$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$
Hence, as $n$ goes to infinity,
$$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
where we used the known fact that
$$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
frac{1}{2^{n-1}sin(pi/2^n)}$$
(see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).
$endgroup$
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
add a comment |
$begingroup$
You obtained an approximation of the exact value. In order to find such exact vale, note that
$$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$
Hence, as $n$ goes to infinity,
$$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
where we used the known fact that
$$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
frac{1}{2^{n-1}sin(pi/2^n)}$$
(see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).
$endgroup$
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
add a comment |
$begingroup$
You obtained an approximation of the exact value. In order to find such exact vale, note that
$$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$
Hence, as $n$ goes to infinity,
$$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
where we used the known fact that
$$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
frac{1}{2^{n-1}sin(pi/2^n)}$$
(see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).
$endgroup$
You obtained an approximation of the exact value. In order to find such exact vale, note that
$$(1-tan^4(alpha/2))=(1+tan^2(alpha/2))(1-tan^2(alpha/2))=
frac{4}{cos(alpha)}left(frac{tan(alpha/2)}{tan(alpha)}right)^2.$$
Hence, as $n$ goes to infinity,
$$prod_{k=3}^n left(1-tan^4(pi/2^k)right)=frac{4^{n-2}}{prod_{k=3}^ncos(pi/2^{k-1})}cdot left(prod_{k=3}^nfrac{tan(pi/2^k)}{tan(pi/2^{k-1})}right)^2\=4^{n-2}cdot 2^{n-2}sin(pi/2^{n-1})cdot left(frac{tan(pi/2^n)}{tan(pi/2^{2})}right)^2to frac{pi^3}{32}$$
where we used the known fact that
$$prodlimits_{k=2}^{n}cosleft(frac{pi }{2^{k}}right)=
frac{1}{2^{n-1}sin(pi/2^n)}$$
(see for example How to evaluate $limlimits_{nto infty}prodlimits_{r=2}^{n}cosleft(frac{pi}{2^{r}}right)$).
edited Jan 3 at 16:51
answered Jan 3 at 15:56
Robert ZRobert Z
101k1071144
101k1071144
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
add a comment |
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
$begingroup$
Dear downvoter, do you mind to tell me what's wrong with my answer. Please help me to improve it?
$endgroup$
– Robert Z
Jan 3 at 16:50
add a comment |
$begingroup$
What you're describing is how to arrive at an approximation of the actual product.
But you can compute the exact value for the product using trigonometric identities.
$$begin{split}
S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
&=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
&=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
&=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
&= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
&=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
end{split}$$
Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
you can verify that, for any $0<theta<pi$,
$$
prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
$$
Which yields, for $theta=frac pi 4$,
$$
prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
$$
So finally,
$$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
In other words,
$$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$
$endgroup$
add a comment |
$begingroup$
What you're describing is how to arrive at an approximation of the actual product.
But you can compute the exact value for the product using trigonometric identities.
$$begin{split}
S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
&=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
&=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
&=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
&= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
&=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
end{split}$$
Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
you can verify that, for any $0<theta<pi$,
$$
prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
$$
Which yields, for $theta=frac pi 4$,
$$
prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
$$
So finally,
$$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
In other words,
$$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$
$endgroup$
add a comment |
$begingroup$
What you're describing is how to arrive at an approximation of the actual product.
But you can compute the exact value for the product using trigonometric identities.
$$begin{split}
S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
&=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
&=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
&=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
&= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
&=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
end{split}$$
Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
you can verify that, for any $0<theta<pi$,
$$
prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
$$
Which yields, for $theta=frac pi 4$,
$$
prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
$$
So finally,
$$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
In other words,
$$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$
$endgroup$
What you're describing is how to arrive at an approximation of the actual product.
But you can compute the exact value for the product using trigonometric identities.
$$begin{split}
S_n&=prod_{k=3}^n (1-tan^4frac{pi}{2^k})\
&=prod_{k=3}^n (1-tan^2frac{pi}{2^k})(1+tan^2frac{pi}{2^k})\
&=prod_{k=3}^n (frac {cos^2(frac{pi}{2^k}) - sin^2(frac{pi}{2^k})}{cos^2 frac{pi}{2^k}})(frac 1 {cos^2frac{pi}{2^k}})\
&=prod_{k=3}^n frac {cos(frac {pi}{2^{k-1}})}{cos^4 frac{pi}{2^k}}\
&= frac{cosfrac pi 4}{cos^4 frac pi 8}frac{cosfrac pi 8}{cos^4 frac pi {16}}frac{cosfrac pi 16}{cos^4 frac pi {32}}...\
&=cosfrac pi 4 prod_{k=3}^n frac 1 {cos^3 frac pi {2^k}}
end{split}$$
Now because $$frac 1 {cos theta}=frac {2 sin theta}{sin 2theta}$$
you can verify that, for any $0<theta<pi$,
$$
prod_{k=1}^{+infty} frac 1 {cos frac theta {2^k}}=frac theta {sin theta}
$$
Which yields, for $theta=frac pi 4$,
$$
prod_{k=3}^{+infty} frac 1 {cos frac pi {2^k}}=frac pi {4sin frac pi 4}
$$
So finally,
$$lim_{nrightarrow+infty}S_n=left(cos{frac pi 4}right)frac {pi^3} {4^3sin^3 frac pi 4}$$
In other words,
$$lim_{nrightarrow+infty}S_n=frac {pi^3}{32}$$
edited Jan 3 at 16:18
answered Jan 3 at 16:12
Stefan LafonStefan Lafon
3,005212
3,005212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060690%2fon-calculating-the-limit-of-the-infinite-product-prod-k-3n-1-tan4-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown