how to show $ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})$...












1












$begingroup$


$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$



I have tried a lot of stuff, didn't work at all . A hint will be good too.



I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    limit comparison?
    $endgroup$
    – Lord Shark the Unknown
    Jan 3 at 15:46










  • $begingroup$
    yea you're gonna need to use comparison test
    $endgroup$
    – user29418
    Jan 3 at 15:48










  • $begingroup$
    the given series diverges
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 15:53
















1












$begingroup$


$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$



I have tried a lot of stuff, didn't work at all . A hint will be good too.



I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    limit comparison?
    $endgroup$
    – Lord Shark the Unknown
    Jan 3 at 15:46










  • $begingroup$
    yea you're gonna need to use comparison test
    $endgroup$
    – user29418
    Jan 3 at 15:48










  • $begingroup$
    the given series diverges
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 15:53














1












1








1





$begingroup$


$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$



I have tried a lot of stuff, didn't work at all . A hint will be good too.



I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.










share|cite|improve this question











$endgroup$




$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$



I have tried a lot of stuff, didn't work at all . A hint will be good too.



I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 16:05









Dando18

4,71741235




4,71741235










asked Jan 3 at 15:43









Mather Mather

4028




4028








  • 4




    $begingroup$
    limit comparison?
    $endgroup$
    – Lord Shark the Unknown
    Jan 3 at 15:46










  • $begingroup$
    yea you're gonna need to use comparison test
    $endgroup$
    – user29418
    Jan 3 at 15:48










  • $begingroup$
    the given series diverges
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 15:53














  • 4




    $begingroup$
    limit comparison?
    $endgroup$
    – Lord Shark the Unknown
    Jan 3 at 15:46










  • $begingroup$
    yea you're gonna need to use comparison test
    $endgroup$
    – user29418
    Jan 3 at 15:48










  • $begingroup$
    the given series diverges
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 3 at 15:53








4




4




$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46




$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46












$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48




$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48












$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53




$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53










3 Answers
3






active

oldest

votes


















1












$begingroup$

Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
$$
frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
$$

Therefore,
$$
sin(x)gefrac{2x}pitag2
$$

Since $e^x$ is convex,
$$
begin{align}
frac{e^x-e^0}{x-0}
&gelim_{tto0}frac{e^t-e^0}{t-0}\
&=e^0\[6pt]
&=1tag3
end{align}
$$

Therefore,
$$
e^xge1+xtag4
$$

and that
$$
begin{align}
x-sqrt{x^2-a}
&=frac{a}{x+sqrt{x^2-a}}\
&lefrac axtag5
end{align}
$$

Therefore,
$$
sqrt{x^2-a}ge x-frac axtag6
$$

Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
$$
begin{align}
frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
&gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
&=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
&gefrac1pifrac1{nlog(n)}tag7
end{align}
$$

The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    For large $n$, your sequence behaves as
    $$frac{1}{nlog n}$$
    Because the following integral diverges,
    $$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
    By the integral test, your series also diverges.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      how did you know that it behaves like that
      $endgroup$
      – Mather
      Jan 3 at 17:04










    • $begingroup$
      Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
      $endgroup$
      – Zachary
      Jan 3 at 17:31












    • $begingroup$
      oh nice fast and subtle , i would have give this one as a very good answer too !
      $endgroup$
      – Mather
      Jan 3 at 17:33










    • $begingroup$
      thank you @Zachary
      $endgroup$
      – Mather
      Jan 3 at 17:34










    • $begingroup$
      No problem! @Mather
      $endgroup$
      – Zachary
      Jan 4 at 1:24



















    1












    $begingroup$

    Hint. One may observe that,
    $$
    lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
    $$
    giving, for a certain $n_0ge10$, $nge n_0$,
    $$
    frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
    $$
    then, as $n ge 10$,
    $$
    frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
    $$
    yielding, for $Nge n_0$,
    $$
    frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
    $$
    leading to the divergence of the given series.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
      $endgroup$
      – Mather
      Jan 3 at 17:06












    • $begingroup$
      and for $(2)$ how did you get this inequality
      $endgroup$
      – Mather
      Jan 3 at 17:07












    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060695%2fhow-to-show-sum-10-infty-frac-sin-frac1n-lnne-frac1n%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
    $$
    frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
    $$

    Therefore,
    $$
    sin(x)gefrac{2x}pitag2
    $$

    Since $e^x$ is convex,
    $$
    begin{align}
    frac{e^x-e^0}{x-0}
    &gelim_{tto0}frac{e^t-e^0}{t-0}\
    &=e^0\[6pt]
    &=1tag3
    end{align}
    $$

    Therefore,
    $$
    e^xge1+xtag4
    $$

    and that
    $$
    begin{align}
    x-sqrt{x^2-a}
    &=frac{a}{x+sqrt{x^2-a}}\
    &lefrac axtag5
    end{align}
    $$

    Therefore,
    $$
    sqrt{x^2-a}ge x-frac axtag6
    $$

    Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
    $$
    begin{align}
    frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
    &gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
    &=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
    &gefrac1pifrac1{nlog(n)}tag7
    end{align}
    $$

    The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
      $$
      frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
      $$

      Therefore,
      $$
      sin(x)gefrac{2x}pitag2
      $$

      Since $e^x$ is convex,
      $$
      begin{align}
      frac{e^x-e^0}{x-0}
      &gelim_{tto0}frac{e^t-e^0}{t-0}\
      &=e^0\[6pt]
      &=1tag3
      end{align}
      $$

      Therefore,
      $$
      e^xge1+xtag4
      $$

      and that
      $$
      begin{align}
      x-sqrt{x^2-a}
      &=frac{a}{x+sqrt{x^2-a}}\
      &lefrac axtag5
      end{align}
      $$

      Therefore,
      $$
      sqrt{x^2-a}ge x-frac axtag6
      $$

      Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
      $$
      begin{align}
      frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
      &gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
      &=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
      &gefrac1pifrac1{nlog(n)}tag7
      end{align}
      $$

      The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
        $$
        frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
        $$

        Therefore,
        $$
        sin(x)gefrac{2x}pitag2
        $$

        Since $e^x$ is convex,
        $$
        begin{align}
        frac{e^x-e^0}{x-0}
        &gelim_{tto0}frac{e^t-e^0}{t-0}\
        &=e^0\[6pt]
        &=1tag3
        end{align}
        $$

        Therefore,
        $$
        e^xge1+xtag4
        $$

        and that
        $$
        begin{align}
        x-sqrt{x^2-a}
        &=frac{a}{x+sqrt{x^2-a}}\
        &lefrac axtag5
        end{align}
        $$

        Therefore,
        $$
        sqrt{x^2-a}ge x-frac axtag6
        $$

        Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
        $$
        begin{align}
        frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
        &gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
        &=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
        &gefrac1pifrac1{nlog(n)}tag7
        end{align}
        $$

        The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.






        share|cite|improve this answer









        $endgroup$



        Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
        $$
        frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
        $$

        Therefore,
        $$
        sin(x)gefrac{2x}pitag2
        $$

        Since $e^x$ is convex,
        $$
        begin{align}
        frac{e^x-e^0}{x-0}
        &gelim_{tto0}frac{e^t-e^0}{t-0}\
        &=e^0\[6pt]
        &=1tag3
        end{align}
        $$

        Therefore,
        $$
        e^xge1+xtag4
        $$

        and that
        $$
        begin{align}
        x-sqrt{x^2-a}
        &=frac{a}{x+sqrt{x^2-a}}\
        &lefrac axtag5
        end{align}
        $$

        Therefore,
        $$
        sqrt{x^2-a}ge x-frac axtag6
        $$

        Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
        $$
        begin{align}
        frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
        &gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
        &=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
        &gefrac1pifrac1{nlog(n)}tag7
        end{align}
        $$

        The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 17:09









        robjohnrobjohn

        270k27312640




        270k27312640























            1












            $begingroup$

            For large $n$, your sequence behaves as
            $$frac{1}{nlog n}$$
            Because the following integral diverges,
            $$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
            By the integral test, your series also diverges.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              how did you know that it behaves like that
              $endgroup$
              – Mather
              Jan 3 at 17:04










            • $begingroup$
              Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
              $endgroup$
              – Zachary
              Jan 3 at 17:31












            • $begingroup$
              oh nice fast and subtle , i would have give this one as a very good answer too !
              $endgroup$
              – Mather
              Jan 3 at 17:33










            • $begingroup$
              thank you @Zachary
              $endgroup$
              – Mather
              Jan 3 at 17:34










            • $begingroup$
              No problem! @Mather
              $endgroup$
              – Zachary
              Jan 4 at 1:24
















            1












            $begingroup$

            For large $n$, your sequence behaves as
            $$frac{1}{nlog n}$$
            Because the following integral diverges,
            $$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
            By the integral test, your series also diverges.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              how did you know that it behaves like that
              $endgroup$
              – Mather
              Jan 3 at 17:04










            • $begingroup$
              Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
              $endgroup$
              – Zachary
              Jan 3 at 17:31












            • $begingroup$
              oh nice fast and subtle , i would have give this one as a very good answer too !
              $endgroup$
              – Mather
              Jan 3 at 17:33










            • $begingroup$
              thank you @Zachary
              $endgroup$
              – Mather
              Jan 3 at 17:34










            • $begingroup$
              No problem! @Mather
              $endgroup$
              – Zachary
              Jan 4 at 1:24














            1












            1








            1





            $begingroup$

            For large $n$, your sequence behaves as
            $$frac{1}{nlog n}$$
            Because the following integral diverges,
            $$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
            By the integral test, your series also diverges.






            share|cite|improve this answer









            $endgroup$



            For large $n$, your sequence behaves as
            $$frac{1}{nlog n}$$
            Because the following integral diverges,
            $$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
            By the integral test, your series also diverges.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 3 at 15:58









            ZacharyZachary

            2,3551214




            2,3551214












            • $begingroup$
              how did you know that it behaves like that
              $endgroup$
              – Mather
              Jan 3 at 17:04










            • $begingroup$
              Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
              $endgroup$
              – Zachary
              Jan 3 at 17:31












            • $begingroup$
              oh nice fast and subtle , i would have give this one as a very good answer too !
              $endgroup$
              – Mather
              Jan 3 at 17:33










            • $begingroup$
              thank you @Zachary
              $endgroup$
              – Mather
              Jan 3 at 17:34










            • $begingroup$
              No problem! @Mather
              $endgroup$
              – Zachary
              Jan 4 at 1:24


















            • $begingroup$
              how did you know that it behaves like that
              $endgroup$
              – Mather
              Jan 3 at 17:04










            • $begingroup$
              Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
              $endgroup$
              – Zachary
              Jan 3 at 17:31












            • $begingroup$
              oh nice fast and subtle , i would have give this one as a very good answer too !
              $endgroup$
              – Mather
              Jan 3 at 17:33










            • $begingroup$
              thank you @Zachary
              $endgroup$
              – Mather
              Jan 3 at 17:34










            • $begingroup$
              No problem! @Mather
              $endgroup$
              – Zachary
              Jan 4 at 1:24
















            $begingroup$
            how did you know that it behaves like that
            $endgroup$
            – Mather
            Jan 3 at 17:04




            $begingroup$
            how did you know that it behaves like that
            $endgroup$
            – Mather
            Jan 3 at 17:04












            $begingroup$
            Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
            $endgroup$
            – Zachary
            Jan 3 at 17:31






            $begingroup$
            Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
            $endgroup$
            – Zachary
            Jan 3 at 17:31














            $begingroup$
            oh nice fast and subtle , i would have give this one as a very good answer too !
            $endgroup$
            – Mather
            Jan 3 at 17:33




            $begingroup$
            oh nice fast and subtle , i would have give this one as a very good answer too !
            $endgroup$
            – Mather
            Jan 3 at 17:33












            $begingroup$
            thank you @Zachary
            $endgroup$
            – Mather
            Jan 3 at 17:34




            $begingroup$
            thank you @Zachary
            $endgroup$
            – Mather
            Jan 3 at 17:34












            $begingroup$
            No problem! @Mather
            $endgroup$
            – Zachary
            Jan 4 at 1:24




            $begingroup$
            No problem! @Mather
            $endgroup$
            – Zachary
            Jan 4 at 1:24











            1












            $begingroup$

            Hint. One may observe that,
            $$
            lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
            $$
            giving, for a certain $n_0ge10$, $nge n_0$,
            $$
            frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
            $$
            then, as $n ge 10$,
            $$
            frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
            $$
            yielding, for $Nge n_0$,
            $$
            frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
            $$
            leading to the divergence of the given series.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
              $endgroup$
              – Mather
              Jan 3 at 17:06












            • $begingroup$
              and for $(2)$ how did you get this inequality
              $endgroup$
              – Mather
              Jan 3 at 17:07
















            1












            $begingroup$

            Hint. One may observe that,
            $$
            lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
            $$
            giving, for a certain $n_0ge10$, $nge n_0$,
            $$
            frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
            $$
            then, as $n ge 10$,
            $$
            frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
            $$
            yielding, for $Nge n_0$,
            $$
            frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
            $$
            leading to the divergence of the given series.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
              $endgroup$
              – Mather
              Jan 3 at 17:06












            • $begingroup$
              and for $(2)$ how did you get this inequality
              $endgroup$
              – Mather
              Jan 3 at 17:07














            1












            1








            1





            $begingroup$

            Hint. One may observe that,
            $$
            lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
            $$
            giving, for a certain $n_0ge10$, $nge n_0$,
            $$
            frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
            $$
            then, as $n ge 10$,
            $$
            frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
            $$
            yielding, for $Nge n_0$,
            $$
            frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
            $$
            leading to the divergence of the given series.






            share|cite|improve this answer











            $endgroup$



            Hint. One may observe that,
            $$
            lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
            $$
            giving, for a certain $n_0ge10$, $nge n_0$,
            $$
            frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
            $$
            then, as $n ge 10$,
            $$
            frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
            $$
            yielding, for $Nge n_0$,
            $$
            frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
            $$
            leading to the divergence of the given series.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 3 at 16:10

























            answered Jan 3 at 15:58









            Olivier OloaOlivier Oloa

            109k17178294




            109k17178294












            • $begingroup$
              how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
              $endgroup$
              – Mather
              Jan 3 at 17:06












            • $begingroup$
              and for $(2)$ how did you get this inequality
              $endgroup$
              – Mather
              Jan 3 at 17:07


















            • $begingroup$
              how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
              $endgroup$
              – Mather
              Jan 3 at 17:06












            • $begingroup$
              and for $(2)$ how did you get this inequality
              $endgroup$
              – Mather
              Jan 3 at 17:07
















            $begingroup$
            how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
            $endgroup$
            – Mather
            Jan 3 at 17:06






            $begingroup$
            how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
            $endgroup$
            – Mather
            Jan 3 at 17:06














            $begingroup$
            and for $(2)$ how did you get this inequality
            $endgroup$
            – Mather
            Jan 3 at 17:07




            $begingroup$
            and for $(2)$ how did you get this inequality
            $endgroup$
            – Mather
            Jan 3 at 17:07


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060695%2fhow-to-show-sum-10-infty-frac-sin-frac1n-lnne-frac1n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen