how to show $ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})$...
$begingroup$
$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$
I have tried a lot of stuff, didn't work at all . A hint will be good too.
I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$
I have tried a lot of stuff, didn't work at all . A hint will be good too.
I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.
sequences-and-series convergence
$endgroup$
4
$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46
$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48
$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53
add a comment |
$begingroup$
$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$
I have tried a lot of stuff, didn't work at all . A hint will be good too.
I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.
sequences-and-series convergence
$endgroup$
$$ sum_{10}^{infty} frac{sin{frac{1}{n}}}{ln(n)}left(e^{frac{1}{n^2}} - 1right)left(sqrt{n^4 - 8}right) $$
I have tried a lot of stuff, didn't work at all . A hint will be good too.
I know that $sin(frac{1}{n}) < frac{1}{n}$. I have tried to show with Cauchy that it diverges.
sequences-and-series convergence
sequences-and-series convergence
edited Jan 3 at 16:05
Dando18
4,71741235
4,71741235
asked Jan 3 at 15:43
Mather Mather
4028
4028
4
$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46
$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48
$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53
add a comment |
4
$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46
$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48
$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53
4
4
$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46
$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46
$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48
$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48
$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53
$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
$$
frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
$$
Therefore,
$$
sin(x)gefrac{2x}pitag2
$$
Since $e^x$ is convex,
$$
begin{align}
frac{e^x-e^0}{x-0}
&gelim_{tto0}frac{e^t-e^0}{t-0}\
&=e^0\[6pt]
&=1tag3
end{align}
$$
Therefore,
$$
e^xge1+xtag4
$$
and that
$$
begin{align}
x-sqrt{x^2-a}
&=frac{a}{x+sqrt{x^2-a}}\
&lefrac axtag5
end{align}
$$
Therefore,
$$
sqrt{x^2-a}ge x-frac axtag6
$$
Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
$$
begin{align}
frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
&gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
&=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
&gefrac1pifrac1{nlog(n)}tag7
end{align}
$$
The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.
$endgroup$
add a comment |
$begingroup$
For large $n$, your sequence behaves as
$$frac{1}{nlog n}$$
Because the following integral diverges,
$$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
By the integral test, your series also diverges.
$endgroup$
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
add a comment |
$begingroup$
Hint. One may observe that,
$$
lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
$$giving, for a certain $n_0ge10$, $nge n_0$,
$$
frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
$$ then, as $n ge 10$,
$$
frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
$$ yielding, for $Nge n_0$,
$$
frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
$$ leading to the divergence of the given series.
$endgroup$
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060695%2fhow-to-show-sum-10-infty-frac-sin-frac1n-lnne-frac1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
$$
frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
$$
Therefore,
$$
sin(x)gefrac{2x}pitag2
$$
Since $e^x$ is convex,
$$
begin{align}
frac{e^x-e^0}{x-0}
&gelim_{tto0}frac{e^t-e^0}{t-0}\
&=e^0\[6pt]
&=1tag3
end{align}
$$
Therefore,
$$
e^xge1+xtag4
$$
and that
$$
begin{align}
x-sqrt{x^2-a}
&=frac{a}{x+sqrt{x^2-a}}\
&lefrac axtag5
end{align}
$$
Therefore,
$$
sqrt{x^2-a}ge x-frac axtag6
$$
Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
$$
begin{align}
frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
&gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
&=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
&gefrac1pifrac1{nlog(n)}tag7
end{align}
$$
The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.
$endgroup$
add a comment |
$begingroup$
Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
$$
frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
$$
Therefore,
$$
sin(x)gefrac{2x}pitag2
$$
Since $e^x$ is convex,
$$
begin{align}
frac{e^x-e^0}{x-0}
&gelim_{tto0}frac{e^t-e^0}{t-0}\
&=e^0\[6pt]
&=1tag3
end{align}
$$
Therefore,
$$
e^xge1+xtag4
$$
and that
$$
begin{align}
x-sqrt{x^2-a}
&=frac{a}{x+sqrt{x^2-a}}\
&lefrac axtag5
end{align}
$$
Therefore,
$$
sqrt{x^2-a}ge x-frac axtag6
$$
Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
$$
begin{align}
frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
&gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
&=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
&gefrac1pifrac1{nlog(n)}tag7
end{align}
$$
The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.
$endgroup$
add a comment |
$begingroup$
Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
$$
frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
$$
Therefore,
$$
sin(x)gefrac{2x}pitag2
$$
Since $e^x$ is convex,
$$
begin{align}
frac{e^x-e^0}{x-0}
&gelim_{tto0}frac{e^t-e^0}{t-0}\
&=e^0\[6pt]
&=1tag3
end{align}
$$
Therefore,
$$
e^xge1+xtag4
$$
and that
$$
begin{align}
x-sqrt{x^2-a}
&=frac{a}{x+sqrt{x^2-a}}\
&lefrac axtag5
end{align}
$$
Therefore,
$$
sqrt{x^2-a}ge x-frac axtag6
$$
Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
$$
begin{align}
frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
&gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
&=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
&gefrac1pifrac1{nlog(n)}tag7
end{align}
$$
The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.
$endgroup$
Because $sin(x)$ is concave on $left[0,fracpi2right]$, for $xinleft[0,fracpi2right]$,
$$
frac{sin(x)-sin(0)}{x-0}gefrac{sinleft(fracpi2right)-sin(0)}{fracpi2-0}tag1
$$
Therefore,
$$
sin(x)gefrac{2x}pitag2
$$
Since $e^x$ is convex,
$$
begin{align}
frac{e^x-e^0}{x-0}
&gelim_{tto0}frac{e^t-e^0}{t-0}\
&=e^0\[6pt]
&=1tag3
end{align}
$$
Therefore,
$$
e^xge1+xtag4
$$
and that
$$
begin{align}
x-sqrt{x^2-a}
&=frac{a}{x+sqrt{x^2-a}}\
&lefrac axtag5
end{align}
$$
Therefore,
$$
sqrt{x^2-a}ge x-frac axtag6
$$
Thus, applying $color{#C00}{(2)}$, $color{#090}{(4)}$, and $color{#00F}{(6)}$, for $nge2$, we have
$$
begin{align}
frac{color{#C00}{sinleft(frac1nright)}}{log(n)}color{#090}{left(e^{frac1{n^2}}-1right)}color{#00F}{sqrt{n^4-8}}
&gefrac{color{#C00}{frac2{pi n}}}{log(n)}color{#090}{left(frac1{n^2}right)}color{#00F}{left(n^2-frac8{n^2}right)}\
&=frac2pifrac1{nlog(n)}left(1-frac8{n^4}right)\
&gefrac1pifrac1{nlog(n)}tag7
end{align}
$$
The series $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ diverges by the Cauchy Condensation test (applied twice is nice); and therefore, the original series diverges by comparison with $sumlimits_{n=2}^inftyfrac1{nlog(n)}$ using $(7)$.
answered Jan 3 at 17:09
robjohn♦robjohn
270k27312640
270k27312640
add a comment |
add a comment |
$begingroup$
For large $n$, your sequence behaves as
$$frac{1}{nlog n}$$
Because the following integral diverges,
$$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
By the integral test, your series also diverges.
$endgroup$
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
add a comment |
$begingroup$
For large $n$, your sequence behaves as
$$frac{1}{nlog n}$$
Because the following integral diverges,
$$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
By the integral test, your series also diverges.
$endgroup$
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
add a comment |
$begingroup$
For large $n$, your sequence behaves as
$$frac{1}{nlog n}$$
Because the following integral diverges,
$$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
By the integral test, your series also diverges.
$endgroup$
For large $n$, your sequence behaves as
$$frac{1}{nlog n}$$
Because the following integral diverges,
$$int_{10}^infty frac{dx}{xlog x}=log log x Big|_{10}^infty $$
By the integral test, your series also diverges.
answered Jan 3 at 15:58
ZacharyZachary
2,3551214
2,3551214
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
add a comment |
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
how did you know that it behaves like that
$endgroup$
– Mather
Jan 3 at 17:04
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
Well $sin 1/n sim 1/n$, $sqrt{n^4-8}sim n^2$, and $e^{1/n^2}-1sim 1/n^2$. You can prove these asymptotics using the functions' Maclaurin series.
$endgroup$
– Zachary
Jan 3 at 17:31
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
oh nice fast and subtle , i would have give this one as a very good answer too !
$endgroup$
– Mather
Jan 3 at 17:33
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
thank you @Zachary
$endgroup$
– Mather
Jan 3 at 17:34
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
$begingroup$
No problem! @Mather
$endgroup$
– Zachary
Jan 4 at 1:24
add a comment |
$begingroup$
Hint. One may observe that,
$$
lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
$$giving, for a certain $n_0ge10$, $nge n_0$,
$$
frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
$$ then, as $n ge 10$,
$$
frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
$$ yielding, for $Nge n_0$,
$$
frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
$$ leading to the divergence of the given series.
$endgroup$
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
add a comment |
$begingroup$
Hint. One may observe that,
$$
lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
$$giving, for a certain $n_0ge10$, $nge n_0$,
$$
frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
$$ then, as $n ge 10$,
$$
frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
$$ yielding, for $Nge n_0$,
$$
frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
$$ leading to the divergence of the given series.
$endgroup$
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
add a comment |
$begingroup$
Hint. One may observe that,
$$
lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
$$giving, for a certain $n_0ge10$, $nge n_0$,
$$
frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
$$ then, as $n ge 10$,
$$
frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
$$ yielding, for $Nge n_0$,
$$
frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
$$ leading to the divergence of the given series.
$endgroup$
Hint. One may observe that,
$$
lim_{ nto infty}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})= 1
$$giving, for a certain $n_0ge10$, $nge n_0$,
$$
frac12 le(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8}) tag1
$$ then, as $n ge 10$,
$$
frac{1}{n}-frac{1}{6n^3}lesin{frac{1}{n}}tag2
$$ yielding, for $Nge n_0$,
$$
frac{1}{2}sum_{n_0}^{N}frac{1}{nln n}-frac{1}{12}sum_{n_0}^{N}frac{1}{n^3ln n}lesum_{n_0}^{N} frac{sin{frac{1}{n}}}{ln n}(e^{frac{1}{n^2}} - 1)(sqrt{n^4 - 8})
$$ leading to the divergence of the given series.
edited Jan 3 at 16:10
answered Jan 3 at 15:58
Olivier OloaOlivier Oloa
109k17178294
109k17178294
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
add a comment |
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
how did you know all of these facts ? say $(1)$ ? did you plug $epsilon$ = $ frac{1}{2} $ and get n ?
$endgroup$
– Mather
Jan 3 at 17:06
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
$begingroup$
and for $(2)$ how did you get this inequality
$endgroup$
– Mather
Jan 3 at 17:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060695%2fhow-to-show-sum-10-infty-frac-sin-frac1n-lnne-frac1n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
limit comparison?
$endgroup$
– Lord Shark the Unknown
Jan 3 at 15:46
$begingroup$
yea you're gonna need to use comparison test
$endgroup$
– user29418
Jan 3 at 15:48
$begingroup$
the given series diverges
$endgroup$
– Dr. Sonnhard Graubner
Jan 3 at 15:53