Fundamental Theorem on Homomorphisms - Application
$begingroup$
I want to show
1.) For $n,min mathbb Z$ with $m|n$ there exists a ring homomorphism between $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$.
I know that there is the canonical homomorphism $f: mathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. The Fundamental theorem on homomorphisms for rings now allows me, because $nmathbb{Z}$ is an ideal in $mathbb Z$, to conclude the existence of a ring homomorphism $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. But here is the problem: $mathbb{Z}/nmathbb{Z}$ has to be a subset of $ker(f)$ for that conclusion. Is that the case and if so: why?
2.) A restriction of the above Homomorphism on the unity groups $(mathbb Z/nmathbb Z)^* rightarrow (mathbb Z/mmathbb Z)^*$ is a group homomorphism.
I believe that one can solve this easily if 1.) is solved.
abstract-algebra ring-theory modules ideals
$endgroup$
add a comment |
$begingroup$
I want to show
1.) For $n,min mathbb Z$ with $m|n$ there exists a ring homomorphism between $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$.
I know that there is the canonical homomorphism $f: mathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. The Fundamental theorem on homomorphisms for rings now allows me, because $nmathbb{Z}$ is an ideal in $mathbb Z$, to conclude the existence of a ring homomorphism $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. But here is the problem: $mathbb{Z}/nmathbb{Z}$ has to be a subset of $ker(f)$ for that conclusion. Is that the case and if so: why?
2.) A restriction of the above Homomorphism on the unity groups $(mathbb Z/nmathbb Z)^* rightarrow (mathbb Z/mmathbb Z)^*$ is a group homomorphism.
I believe that one can solve this easily if 1.) is solved.
abstract-algebra ring-theory modules ideals
$endgroup$
add a comment |
$begingroup$
I want to show
1.) For $n,min mathbb Z$ with $m|n$ there exists a ring homomorphism between $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$.
I know that there is the canonical homomorphism $f: mathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. The Fundamental theorem on homomorphisms for rings now allows me, because $nmathbb{Z}$ is an ideal in $mathbb Z$, to conclude the existence of a ring homomorphism $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. But here is the problem: $mathbb{Z}/nmathbb{Z}$ has to be a subset of $ker(f)$ for that conclusion. Is that the case and if so: why?
2.) A restriction of the above Homomorphism on the unity groups $(mathbb Z/nmathbb Z)^* rightarrow (mathbb Z/mmathbb Z)^*$ is a group homomorphism.
I believe that one can solve this easily if 1.) is solved.
abstract-algebra ring-theory modules ideals
$endgroup$
I want to show
1.) For $n,min mathbb Z$ with $m|n$ there exists a ring homomorphism between $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$.
I know that there is the canonical homomorphism $f: mathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. The Fundamental theorem on homomorphisms for rings now allows me, because $nmathbb{Z}$ is an ideal in $mathbb Z$, to conclude the existence of a ring homomorphism $mathbb{Z}/nmathbb{Z} rightarrow mathbb{Z}/mmathbb{Z}$. But here is the problem: $mathbb{Z}/nmathbb{Z}$ has to be a subset of $ker(f)$ for that conclusion. Is that the case and if so: why?
2.) A restriction of the above Homomorphism on the unity groups $(mathbb Z/nmathbb Z)^* rightarrow (mathbb Z/mmathbb Z)^*$ is a group homomorphism.
I believe that one can solve this easily if 1.) is solved.
abstract-algebra ring-theory modules ideals
abstract-algebra ring-theory modules ideals
edited Jan 3 at 15:39
Antonios-Alexandros Robotis
10.6k41741
10.6k41741
asked Jan 3 at 15:25
KingDingelingKingDingeling
1857
1857
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Why not study the canonical map $mathbb{Z}xrightarrow{varphi} mathbb{Z}/mmathbb{Z}$ given by the projection $nmapsto [n]_m$? The first isomorphism theorem tells us that $mathbb{Z}/kervarphicong mathbb{Z}/mmathbb{Z}$. Because $m|n$, we get that for $kin nmathbb{Z}$, i.e. $k=ell n=ell rm$ for some $kin mathbb{Z}$, we have
$$varphi(k) =[k]_m=[ell r m]_m=0 pmod{m}.$$
So, $nmathbb{Z}subseteqkervarphi$ and the factorization theorem tells us that we get an induced map $widetilde{varphi}:nmathbb{Z}to mmathbb{Z}$. This is defined by $widetilde{varphi}(a+nmathbb{Z})=varphi(a)=[a]_m.$
$endgroup$
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
add a comment |
$begingroup$
If $f : Gto G'$ be a homomorphic and onto then $h : dfrac{G}{K} to G'$ is an isomorphism and onto where $K = ker f$.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060672%2ffundamental-theorem-on-homomorphisms-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Why not study the canonical map $mathbb{Z}xrightarrow{varphi} mathbb{Z}/mmathbb{Z}$ given by the projection $nmapsto [n]_m$? The first isomorphism theorem tells us that $mathbb{Z}/kervarphicong mathbb{Z}/mmathbb{Z}$. Because $m|n$, we get that for $kin nmathbb{Z}$, i.e. $k=ell n=ell rm$ for some $kin mathbb{Z}$, we have
$$varphi(k) =[k]_m=[ell r m]_m=0 pmod{m}.$$
So, $nmathbb{Z}subseteqkervarphi$ and the factorization theorem tells us that we get an induced map $widetilde{varphi}:nmathbb{Z}to mmathbb{Z}$. This is defined by $widetilde{varphi}(a+nmathbb{Z})=varphi(a)=[a]_m.$
$endgroup$
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
add a comment |
$begingroup$
Why not study the canonical map $mathbb{Z}xrightarrow{varphi} mathbb{Z}/mmathbb{Z}$ given by the projection $nmapsto [n]_m$? The first isomorphism theorem tells us that $mathbb{Z}/kervarphicong mathbb{Z}/mmathbb{Z}$. Because $m|n$, we get that for $kin nmathbb{Z}$, i.e. $k=ell n=ell rm$ for some $kin mathbb{Z}$, we have
$$varphi(k) =[k]_m=[ell r m]_m=0 pmod{m}.$$
So, $nmathbb{Z}subseteqkervarphi$ and the factorization theorem tells us that we get an induced map $widetilde{varphi}:nmathbb{Z}to mmathbb{Z}$. This is defined by $widetilde{varphi}(a+nmathbb{Z})=varphi(a)=[a]_m.$
$endgroup$
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
add a comment |
$begingroup$
Why not study the canonical map $mathbb{Z}xrightarrow{varphi} mathbb{Z}/mmathbb{Z}$ given by the projection $nmapsto [n]_m$? The first isomorphism theorem tells us that $mathbb{Z}/kervarphicong mathbb{Z}/mmathbb{Z}$. Because $m|n$, we get that for $kin nmathbb{Z}$, i.e. $k=ell n=ell rm$ for some $kin mathbb{Z}$, we have
$$varphi(k) =[k]_m=[ell r m]_m=0 pmod{m}.$$
So, $nmathbb{Z}subseteqkervarphi$ and the factorization theorem tells us that we get an induced map $widetilde{varphi}:nmathbb{Z}to mmathbb{Z}$. This is defined by $widetilde{varphi}(a+nmathbb{Z})=varphi(a)=[a]_m.$
$endgroup$
Why not study the canonical map $mathbb{Z}xrightarrow{varphi} mathbb{Z}/mmathbb{Z}$ given by the projection $nmapsto [n]_m$? The first isomorphism theorem tells us that $mathbb{Z}/kervarphicong mathbb{Z}/mmathbb{Z}$. Because $m|n$, we get that for $kin nmathbb{Z}$, i.e. $k=ell n=ell rm$ for some $kin mathbb{Z}$, we have
$$varphi(k) =[k]_m=[ell r m]_m=0 pmod{m}.$$
So, $nmathbb{Z}subseteqkervarphi$ and the factorization theorem tells us that we get an induced map $widetilde{varphi}:nmathbb{Z}to mmathbb{Z}$. This is defined by $widetilde{varphi}(a+nmathbb{Z})=varphi(a)=[a]_m.$
edited Jan 3 at 15:40
answered Jan 3 at 15:34
Antonios-Alexandros RobotisAntonios-Alexandros Robotis
10.6k41741
10.6k41741
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
add a comment |
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
$begingroup$
Thank you for your answer and for taking the time :)
$endgroup$
– KingDingeling
Jan 3 at 16:02
add a comment |
$begingroup$
If $f : Gto G'$ be a homomorphic and onto then $h : dfrac{G}{K} to G'$ is an isomorphism and onto where $K = ker f$.
New contributor
$endgroup$
add a comment |
$begingroup$
If $f : Gto G'$ be a homomorphic and onto then $h : dfrac{G}{K} to G'$ is an isomorphism and onto where $K = ker f$.
New contributor
$endgroup$
add a comment |
$begingroup$
If $f : Gto G'$ be a homomorphic and onto then $h : dfrac{G}{K} to G'$ is an isomorphism and onto where $K = ker f$.
New contributor
$endgroup$
If $f : Gto G'$ be a homomorphic and onto then $h : dfrac{G}{K} to G'$ is an isomorphism and onto where $K = ker f$.
New contributor
edited 2 days ago
Max
9771319
9771319
New contributor
answered 2 days ago
Yamini Singh Yamini Singh
1
1
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060672%2ffundamental-theorem-on-homomorphisms-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown