Does a matrix of minimum norm in an affine subspace of $M_n(mathbb R)$ have minimum spectral radius?
up vote
4
down vote
favorite
Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}
I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.
Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.
My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.
linear-algebra matrices spectral-radius matrix-norms
add a comment |
up vote
4
down vote
favorite
Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}
I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.
Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.
My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.
linear-algebra matrices spectral-radius matrix-norms
This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday
@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}
I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.
Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.
My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.
linear-algebra matrices spectral-radius matrix-norms
Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}
I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.
Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.
My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.
linear-algebra matrices spectral-radius matrix-norms
linear-algebra matrices spectral-radius matrix-norms
edited yesterday
asked Nov 20 at 0:52
user9527
1,4191627
1,4191627
This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday
@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday
add a comment |
This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday
@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday
This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday
This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday
@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday
@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.
If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.
E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
$$
A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
$$
Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.
So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.
If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.
E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
$$
A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
$$
Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.
So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.
add a comment |
up vote
1
down vote
If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.
If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.
E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
$$
A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
$$
Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.
So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.
add a comment |
up vote
1
down vote
up vote
1
down vote
If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.
If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.
E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
$$
A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
$$
Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.
So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.
If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.
If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.
E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
$$
A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
$$
Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.
So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.
answered yesterday
user1551
70.2k566125
70.2k566125
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005774%2fdoes-a-matrix-of-minimum-norm-in-an-affine-subspace-of-m-n-mathbb-r-have-min%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday
@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday