Does a matrix of minimum norm in an affine subspace of $M_n(mathbb R)$ have minimum spectral radius?











up vote
4
down vote

favorite
1












Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}

I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.



Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.



My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.










share|cite|improve this question
























  • This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
    – user1551
    yesterday












  • @user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
    – user9527
    yesterday















up vote
4
down vote

favorite
1












Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}

I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.



Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.



My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.










share|cite|improve this question
























  • This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
    – user1551
    yesterday












  • @user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
    – user9527
    yesterday













up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}

I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.



Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.



My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.










share|cite|improve this question















Let $mathcal U in M_n(mathbb R)$ be a subspace defined by declaring certain entries to be $0$. More precisely, let $Lambda, Theta subset {1, dots, n}$, $mathcal U$ is defined as
begin{align*}
mathcal U = { A in M_n(mathbb R): a_{ij} = 0 text{ for } (i, j) in Lambda times Theta text{ when } i neq j text{ and } a_{ii} = 0 text{ for } i = {1, dots, n} }.
end{align*}

I hope this is clear. Essentially $mathcal U$ is a subspace with certain zero patterns on its entries and in particular, the diagonal entries are $0$.



Now let $A in mathcal U$ and we consider the affine subspace $mathcal S := A + mathcal U^{perp}$ where $mathcal U^{perp}$ would be the matrix with zero pattern opposite to $mathcal U$. It is clear with respect to the inner product defined by $langle M, N rangle = text{tr}(M^TN)$, $A$ is of minimum norm in $mathcal S$.



My question: suppose $rho(A) ge a$ where $a$ is some scalar in $mathbb R$ and $rho$ denotes spectral radius, is it possible for any $B in mathcal S$, we have $rho(B) ge a$. In general, I know matrix norm is an upper bound of spectral radius and we should not expect such inequality. But I failed to construct a counterexample or prove it.







linear-algebra matrices spectral-radius matrix-norms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday

























asked Nov 20 at 0:52









user9527

1,4191627




1,4191627












  • This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
    – user1551
    yesterday












  • @user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
    – user9527
    yesterday


















  • This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
    – user1551
    yesterday












  • @user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
    – user9527
    yesterday
















This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday






This may not be essential, but just to be clear: does "$iinLambda, jinTheta$" mean "$(i,j)inLambdatimesTheta$" or "$(i,j)in(Lambdatimes{1,2,ldots,n})cup({1,2,ldots,n}timesTheta)$"?
– user1551
yesterday














@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday




@user1551: Yes. I have a problem in formulating formally. Ideally, I want to guarantee the diagonal entries are $0$. In addition, the other entries can be zeros at will. In writing down the question, I was thinking that $Lambda cap Theta$ might not be empty so I chose the way in the question. Thanks.
– user9527
yesterday










1 Answer
1






active

oldest

votes

















up vote
1
down vote













If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.



If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.



E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
$$
A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
$$

Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.



So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005774%2fdoes-a-matrix-of-minimum-norm-in-an-affine-subspace-of-m-n-mathbb-r-have-min%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.



    If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.



    E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
    $$
    A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
    $$

    Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.



    So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.






    share|cite|improve this answer

























      up vote
      1
      down vote













      If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.



      If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.



      E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
      $$
      A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
      $$

      Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.



      So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.






      share|cite|improve this answer























        up vote
        1
        down vote










        up vote
        1
        down vote









        If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.



        If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.



        E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
        $$
        A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
        $$

        Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.



        So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.






        share|cite|improve this answer












        If $A$ is nilpotent, $a$ has to be non-positive. Hence $rho(B)$ is always $ge a$ and the answer to your question is yes in this case.



        If $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ is not an eigenvalue of $A$, then provided that $a$ is sufficiently close to $rho(A)$, there always exists some scalar matrix $tIin U^perp$ such that $rho(A-tI)<a$ and hence the answer to your question is no in this case.



        E.g. suppose $n=3, Lambda={1}$ and $Theta={3}$. Then $Ainmathcal U$ if and only if $a_{13}=0$ and $A$ has a zero diagonal. Let
        $$
        A=pmatrix{0&1&0\ 2&0&2\ 2&2&0}.
        $$

        Its spectrum is ${1+sqrt{3}, -2, 1-sqrt{3}}$ and $rho(A)=1+sqrt{3}approx2.732$. Let $ain(2, rho(A))$. Then for any $tin(rho(A)-a, rho(A)-2)$, we have $tIinmathcal U^perp$ but $rho(A-tI)=rho(A)-t<a$.



        So, the only interesting case is when both $lambda=argmax_{|lambda_i(A)|=rho(A)}|Re(lambda_i(A))|$ and $-lambda$ are eigenvalues of $A$, for which I haven't any answer yet.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        user1551

        70.2k566125




        70.2k566125






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005774%2fdoes-a-matrix-of-minimum-norm-in-an-affine-subspace-of-m-n-mathbb-r-have-min%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            To store a contact into the json file from server.js file using a class in NodeJS

            Redirect URL with Chrome Remote Debugging Android Devices

            Dieringhausen