How to prove that $frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$?











up vote
74
down vote

favorite
38












How can one prove this identity?




$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$






There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.










share|cite|improve this question




















  • 12




    I think this is a normal question. I don't know why "on hold"?
    – E.H.E
    Dec 24 '14 at 19:28






  • 2




    There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
    – robjohn
    Dec 31 '14 at 18:13

















up vote
74
down vote

favorite
38












How can one prove this identity?




$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$






There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.










share|cite|improve this question




















  • 12




    I think this is a normal question. I don't know why "on hold"?
    – E.H.E
    Dec 24 '14 at 19:28






  • 2




    There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
    – robjohn
    Dec 31 '14 at 18:13















up vote
74
down vote

favorite
38









up vote
74
down vote

favorite
38






38





How can one prove this identity?




$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$






There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.










share|cite|improve this question















How can one prove this identity?




$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$






There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.







real-analysis sequences-and-series complex-analysis zeta-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 25 '14 at 1:05







user147263

















asked Dec 24 '14 at 18:24









E.H.E

15.7k11965




15.7k11965








  • 12




    I think this is a normal question. I don't know why "on hold"?
    – E.H.E
    Dec 24 '14 at 19:28






  • 2




    There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
    – robjohn
    Dec 31 '14 at 18:13
















  • 12




    I think this is a normal question. I don't know why "on hold"?
    – E.H.E
    Dec 24 '14 at 19:28






  • 2




    There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
    – robjohn
    Dec 31 '14 at 18:13










12




12




I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28




I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28




2




2




There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn
Dec 31 '14 at 18:13






There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn
Dec 31 '14 at 18:13












4 Answers
4






active

oldest

votes

















up vote
106
down vote



accepted










Since
$$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
we have:
$$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$






share|cite|improve this answer

















  • 1




    @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
    – Jack D'Aurizio
    Jul 14 '17 at 18:41




















up vote
106
down vote













$$
begin{align}
sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
&=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
&=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
&=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
&=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
&=1tag{5}
end{align}
$$
Explanation:

$(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$

$(2)$: change the order of summation

$(3)$: sum of a geometric series

$(4)$: partial fractions

$(5)$: telescoping sum






share|cite|improve this answer























  • @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
    – Amad27
    Mar 20 '15 at 16:45








  • 2




    @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
    – robjohn
    Mar 20 '15 at 17:10












  • Ah! I couldn't catch the index! Sorry robjohn!
    – Amad27
    Mar 20 '15 at 18:17






  • 1




    This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
    – Paramanand Singh
    Jun 20 '16 at 10:29


















up vote
37
down vote













The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$



Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$



But $cot left(frac{pi}{2} right)=0$.



Therefore,



$$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$






share|cite|improve this answer























  • +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
    – Felix Marin
    Dec 24 '14 at 22:54












  • @FelixMarin Thanks. This actually wasn't my first approach.
    – Random Variable
    Dec 24 '14 at 23:20












  • (+1) Beautiful approach! This relation is also proven in this answer.
    – robjohn
    Dec 25 '14 at 0:06


















up vote
9
down vote













$newcommand{angles}[1]{leftlangle{#1}rightrangle}
newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left({#1}right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert{#1}rightvert}$



begin{align}
&bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
\[3mm] = &
-sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
\ = &
-bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
\[3mm] & - bracks{%
{1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
\[8mm] = &
-Psipars{half} - {2 over 3} +
underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
{1 over 3} = color{#f00}{1}
end{align}




$Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.







share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1080000%2fhow-to-prove-that-frac-zeta2-2-frac-zeta-423-frac-zeta-62%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    106
    down vote



    accepted










    Since
    $$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
    we have:
    $$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$






    share|cite|improve this answer

















    • 1




      @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
      – Jack D'Aurizio
      Jul 14 '17 at 18:41

















    up vote
    106
    down vote



    accepted










    Since
    $$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
    we have:
    $$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$






    share|cite|improve this answer

















    • 1




      @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
      – Jack D'Aurizio
      Jul 14 '17 at 18:41















    up vote
    106
    down vote



    accepted







    up vote
    106
    down vote



    accepted






    Since
    $$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
    we have:
    $$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$






    share|cite|improve this answer












    Since
    $$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
    we have:
    $$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 24 '14 at 18:29









    Jack D'Aurizio

    283k33275653




    283k33275653








    • 1




      @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
      – Jack D'Aurizio
      Jul 14 '17 at 18:41
















    • 1




      @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
      – Jack D'Aurizio
      Jul 14 '17 at 18:41










    1




    1




    @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
    – Jack D'Aurizio
    Jul 14 '17 at 18:41






    @mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
    – Jack D'Aurizio
    Jul 14 '17 at 18:41












    up vote
    106
    down vote













    $$
    begin{align}
    sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
    &=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
    &=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
    &=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
    &=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
    &=1tag{5}
    end{align}
    $$
    Explanation:

    $(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$

    $(2)$: change the order of summation

    $(3)$: sum of a geometric series

    $(4)$: partial fractions

    $(5)$: telescoping sum






    share|cite|improve this answer























    • @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
      – Amad27
      Mar 20 '15 at 16:45








    • 2




      @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
      – robjohn
      Mar 20 '15 at 17:10












    • Ah! I couldn't catch the index! Sorry robjohn!
      – Amad27
      Mar 20 '15 at 18:17






    • 1




      This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
      – Paramanand Singh
      Jun 20 '16 at 10:29















    up vote
    106
    down vote













    $$
    begin{align}
    sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
    &=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
    &=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
    &=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
    &=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
    &=1tag{5}
    end{align}
    $$
    Explanation:

    $(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$

    $(2)$: change the order of summation

    $(3)$: sum of a geometric series

    $(4)$: partial fractions

    $(5)$: telescoping sum






    share|cite|improve this answer























    • @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
      – Amad27
      Mar 20 '15 at 16:45








    • 2




      @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
      – robjohn
      Mar 20 '15 at 17:10












    • Ah! I couldn't catch the index! Sorry robjohn!
      – Amad27
      Mar 20 '15 at 18:17






    • 1




      This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
      – Paramanand Singh
      Jun 20 '16 at 10:29













    up vote
    106
    down vote










    up vote
    106
    down vote









    $$
    begin{align}
    sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
    &=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
    &=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
    &=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
    &=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
    &=1tag{5}
    end{align}
    $$
    Explanation:

    $(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$

    $(2)$: change the order of summation

    $(3)$: sum of a geometric series

    $(4)$: partial fractions

    $(5)$: telescoping sum






    share|cite|improve this answer














    $$
    begin{align}
    sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
    &=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
    &=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
    &=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
    &=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
    &=1tag{5}
    end{align}
    $$
    Explanation:

    $(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$

    $(2)$: change the order of summation

    $(3)$: sum of a geometric series

    $(4)$: partial fractions

    $(5)$: telescoping sum







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 24 '14 at 20:49

























    answered Dec 24 '14 at 20:44









    robjohn

    262k27300620




    262k27300620












    • @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
      – Amad27
      Mar 20 '15 at 16:45








    • 2




      @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
      – robjohn
      Mar 20 '15 at 17:10












    • Ah! I couldn't catch the index! Sorry robjohn!
      – Amad27
      Mar 20 '15 at 18:17






    • 1




      This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
      – Paramanand Singh
      Jun 20 '16 at 10:29


















    • @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
      – Amad27
      Mar 20 '15 at 16:45








    • 2




      @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
      – robjohn
      Mar 20 '15 at 17:10












    • Ah! I couldn't catch the index! Sorry robjohn!
      – Amad27
      Mar 20 '15 at 18:17






    • 1




      This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
      – Paramanand Singh
      Jun 20 '16 at 10:29
















    @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
    – Amad27
    Mar 20 '15 at 16:45






    @robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
    – Amad27
    Mar 20 '15 at 16:45






    2




    2




    @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
    – robjohn
    Mar 20 '15 at 17:10






    @Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
    – robjohn
    Mar 20 '15 at 17:10














    Ah! I couldn't catch the index! Sorry robjohn!
    – Amad27
    Mar 20 '15 at 18:17




    Ah! I couldn't catch the index! Sorry robjohn!
    – Amad27
    Mar 20 '15 at 18:17




    1




    1




    This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
    – Paramanand Singh
    Jun 20 '16 at 10:29




    This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
    – Paramanand Singh
    Jun 20 '16 at 10:29










    up vote
    37
    down vote













    The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$



    Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$



    But $cot left(frac{pi}{2} right)=0$.



    Therefore,



    $$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$






    share|cite|improve this answer























    • +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
      – Felix Marin
      Dec 24 '14 at 22:54












    • @FelixMarin Thanks. This actually wasn't my first approach.
      – Random Variable
      Dec 24 '14 at 23:20












    • (+1) Beautiful approach! This relation is also proven in this answer.
      – robjohn
      Dec 25 '14 at 0:06















    up vote
    37
    down vote













    The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$



    Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$



    But $cot left(frac{pi}{2} right)=0$.



    Therefore,



    $$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$






    share|cite|improve this answer























    • +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
      – Felix Marin
      Dec 24 '14 at 22:54












    • @FelixMarin Thanks. This actually wasn't my first approach.
      – Random Variable
      Dec 24 '14 at 23:20












    • (+1) Beautiful approach! This relation is also proven in this answer.
      – robjohn
      Dec 25 '14 at 0:06













    up vote
    37
    down vote










    up vote
    37
    down vote









    The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$



    Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$



    But $cot left(frac{pi}{2} right)=0$.



    Therefore,



    $$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$






    share|cite|improve this answer














    The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$



    Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$



    But $cot left(frac{pi}{2} right)=0$.



    Therefore,



    $$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 24 '14 at 22:33

























    answered Dec 24 '14 at 22:27









    Random Variable

    25.3k170136




    25.3k170136












    • +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
      – Felix Marin
      Dec 24 '14 at 22:54












    • @FelixMarin Thanks. This actually wasn't my first approach.
      – Random Variable
      Dec 24 '14 at 23:20












    • (+1) Beautiful approach! This relation is also proven in this answer.
      – robjohn
      Dec 25 '14 at 0:06


















    • +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
      – Felix Marin
      Dec 24 '14 at 22:54












    • @FelixMarin Thanks. This actually wasn't my first approach.
      – Random Variable
      Dec 24 '14 at 23:20












    • (+1) Beautiful approach! This relation is also proven in this answer.
      – robjohn
      Dec 25 '14 at 0:06
















    +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
    – Felix Marin
    Dec 24 '14 at 22:54






    +1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
    – Felix Marin
    Dec 24 '14 at 22:54














    @FelixMarin Thanks. This actually wasn't my first approach.
    – Random Variable
    Dec 24 '14 at 23:20






    @FelixMarin Thanks. This actually wasn't my first approach.
    – Random Variable
    Dec 24 '14 at 23:20














    (+1) Beautiful approach! This relation is also proven in this answer.
    – robjohn
    Dec 25 '14 at 0:06




    (+1) Beautiful approach! This relation is also proven in this answer.
    – robjohn
    Dec 25 '14 at 0:06










    up vote
    9
    down vote













    $newcommand{angles}[1]{leftlangle{#1}rightrangle}
    newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
    newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{half}{{1 over 2}}
    newcommand{ic}{mathrm{i}}
    newcommand{iff}{Leftrightarrow}
    newcommand{imp}{Longrightarrow}
    newcommand{ol}[1]{overline{#1}}
    newcommand{pars}[1]{left({#1}right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert{#1}rightvert}$



    begin{align}
    &bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
    sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
    \[3mm] = &
    -sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
    sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
    underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
    \ = &
    -bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
    \[3mm] & - bracks{%
    {1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
    \[8mm] = &
    -Psipars{half} - {2 over 3} +
    underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
    {1 over 3} = color{#f00}{1}
    end{align}




    $Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.







    share|cite|improve this answer



























      up vote
      9
      down vote













      $newcommand{angles}[1]{leftlangle{#1}rightrangle}
      newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
      newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{half}{{1 over 2}}
      newcommand{ic}{mathrm{i}}
      newcommand{iff}{Leftrightarrow}
      newcommand{imp}{Longrightarrow}
      newcommand{ol}[1]{overline{#1}}
      newcommand{pars}[1]{left({#1}right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert{#1}rightvert}$



      begin{align}
      &bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
      sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
      \[3mm] = &
      -sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
      sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
      underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
      \ = &
      -bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
      \[3mm] & - bracks{%
      {1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
      \[8mm] = &
      -Psipars{half} - {2 over 3} +
      underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
      {1 over 3} = color{#f00}{1}
      end{align}




      $Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.







      share|cite|improve this answer

























        up vote
        9
        down vote










        up vote
        9
        down vote









        $newcommand{angles}[1]{leftlangle{#1}rightrangle}
        newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
        newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{half}{{1 over 2}}
        newcommand{ic}{mathrm{i}}
        newcommand{iff}{Leftrightarrow}
        newcommand{imp}{Longrightarrow}
        newcommand{ol}[1]{overline{#1}}
        newcommand{pars}[1]{left({#1}right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert{#1}rightvert}$



        begin{align}
        &bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
        sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
        \[3mm] = &
        -sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
        sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
        underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
        \ = &
        -bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
        \[3mm] & - bracks{%
        {1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
        \[8mm] = &
        -Psipars{half} - {2 over 3} +
        underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
        {1 over 3} = color{#f00}{1}
        end{align}




        $Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.







        share|cite|improve this answer














        $newcommand{angles}[1]{leftlangle{#1}rightrangle}
        newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
        newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{half}{{1 over 2}}
        newcommand{ic}{mathrm{i}}
        newcommand{iff}{Leftrightarrow}
        newcommand{imp}{Longrightarrow}
        newcommand{ol}[1]{overline{#1}}
        newcommand{pars}[1]{left({#1}right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert{#1}rightvert}$



        begin{align}
        &bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
        sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
        \[3mm] = &
        -sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
        sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
        underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
        \ = &
        -bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
        \[3mm] & - bracks{%
        {1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
        \[8mm] = &
        -Psipars{half} - {2 over 3} +
        underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
        {1 over 3} = color{#f00}{1}
        end{align}




        $Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.








        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 19 at 22:52

























        answered Jun 19 '16 at 19:42









        Felix Marin

        65.8k7107138




        65.8k7107138






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1080000%2fhow-to-prove-that-frac-zeta2-2-frac-zeta-423-frac-zeta-62%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen