How to prove that $frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$?
up vote
74
down vote
favorite
How can one prove this identity?
$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$
There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.
real-analysis sequences-and-series complex-analysis zeta-functions
add a comment |
up vote
74
down vote
favorite
How can one prove this identity?
$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$
There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.
real-analysis sequences-and-series complex-analysis zeta-functions
12
I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28
2
There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn♦
Dec 31 '14 at 18:13
add a comment |
up vote
74
down vote
favorite
up vote
74
down vote
favorite
How can one prove this identity?
$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$
There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.
real-analysis sequences-and-series complex-analysis zeta-functions
How can one prove this identity?
$$frac{zeta(2) }{2}+frac{zeta (4)}{2^3}+frac{zeta (6)}{2^5}+frac{zeta (8)}{2^7}+cdots=1$$
There is a formula for $zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.
real-analysis sequences-and-series complex-analysis zeta-functions
real-analysis sequences-and-series complex-analysis zeta-functions
edited Dec 25 '14 at 1:05
user147263
asked Dec 24 '14 at 18:24
E.H.E
15.7k11965
15.7k11965
12
I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28
2
There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn♦
Dec 31 '14 at 18:13
add a comment |
12
I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28
2
There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn♦
Dec 31 '14 at 18:13
12
12
I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28
I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28
2
2
There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn♦
Dec 31 '14 at 18:13
There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn♦
Dec 31 '14 at 18:13
add a comment |
4 Answers
4
active
oldest
votes
up vote
106
down vote
accepted
Since
$$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
we have:
$$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$
1
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
add a comment |
up vote
106
down vote
$$
begin{align}
sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
&=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
&=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
&=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
&=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
&=1tag{5}
end{align}
$$
Explanation:
$(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$
$(2)$: change the order of summation
$(3)$: sum of a geometric series
$(4)$: partial fractions
$(5)$: telescoping sum
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
2
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
1
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
add a comment |
up vote
37
down vote
The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$
Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$
But $cot left(frac{pi}{2} right)=0$.
Therefore,
$$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
add a comment |
up vote
9
down vote
$newcommand{angles}[1]{leftlangle{#1}rightrangle}
newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left({#1}right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert{#1}rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
\[3mm] = &
-sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
\ = &
-bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
\[3mm] & - bracks{%
{1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
\[8mm] = &
-Psipars{half} - {2 over 3} +
underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
{1 over 3} = color{#f00}{1}
end{align}
$Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
106
down vote
accepted
Since
$$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
we have:
$$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$
1
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
add a comment |
up vote
106
down vote
accepted
Since
$$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
we have:
$$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$
1
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
add a comment |
up vote
106
down vote
accepted
up vote
106
down vote
accepted
Since
$$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
we have:
$$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$
Since
$$zeta(2n) = frac{1}{(2n-1)!}int_{0}^{+infty}frac{x^{2n-1}}{e^x-1},dx $$
we have:
$$sum_{n=1}^{+infty}frac{zeta(2n)}{2^{2n-1}} = int_{0}^{+infty}frac{sinh(x/2)}{e^x-1},dx =frac{1}{2}int_{0}^{+infty}e^{-x/2},dx = color{red}{1}.$$
answered Dec 24 '14 at 18:29
Jack D'Aurizio
283k33275653
283k33275653
1
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
add a comment |
1
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
1
1
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
@mathworker21: I can mention that the dominated (or just monotone) convergence theorem clearly applies here.
– Jack D'Aurizio
Jul 14 '17 at 18:41
add a comment |
up vote
106
down vote
$$
begin{align}
sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
&=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
&=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
&=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
&=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
&=1tag{5}
end{align}
$$
Explanation:
$(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$
$(2)$: change the order of summation
$(3)$: sum of a geometric series
$(4)$: partial fractions
$(5)$: telescoping sum
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
2
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
1
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
add a comment |
up vote
106
down vote
$$
begin{align}
sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
&=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
&=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
&=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
&=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
&=1tag{5}
end{align}
$$
Explanation:
$(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$
$(2)$: change the order of summation
$(3)$: sum of a geometric series
$(4)$: partial fractions
$(5)$: telescoping sum
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
2
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
1
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
add a comment |
up vote
106
down vote
up vote
106
down vote
$$
begin{align}
sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
&=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
&=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
&=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
&=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
&=1tag{5}
end{align}
$$
Explanation:
$(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$
$(2)$: change the order of summation
$(3)$: sum of a geometric series
$(4)$: partial fractions
$(5)$: telescoping sum
$$
begin{align}
sum_{n=1}^inftyfrac{zeta(2n)}{2^{2n-1}}
&=sum_{n=1}^inftysum_{k=1}^inftyfrac2{k^{2n}2^{2n}}tag{1}\
&=2sum_{k=1}^inftysum_{n=1}^inftyfrac1{(4k^2)^n}tag{2}\
&=2sum_{k=1}^inftyfrac1{4k^2-1}tag{3}\
&=sum_{k=1}^inftyleft(frac1{2k-1}-frac1{2k+1}right)tag{4}\[6pt]
&=1tag{5}
end{align}
$$
Explanation:
$(1)$: expand $zeta(2n)=sumlimits_{k=1}^inftyfrac1{k^{2n}}$
$(2)$: change the order of summation
$(3)$: sum of a geometric series
$(4)$: partial fractions
$(5)$: telescoping sum
edited Dec 24 '14 at 20:49
answered Dec 24 '14 at 20:44
robjohn♦
262k27300620
262k27300620
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
2
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
1
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
add a comment |
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
2
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
1
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
@robjohn, in $(3)$ the numerator should have a $4k^2$. $$sum_{n=1}^{infty} frac{1}{(4k^2)^n} = frac{1}{1- frac{1}{4k^2}} = frac{4k^2}{4k^2 - 1}$$
– Amad27
Mar 20 '15 at 16:45
2
2
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
@Amad27: Notice that the sum starts from $n=1$. This means that the sum is $dfrac{frac1{4k^2}}{1-frac1{4k^2}}$.
– robjohn♦
Mar 20 '15 at 17:10
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
Ah! I couldn't catch the index! Sorry robjohn!
– Amad27
Mar 20 '15 at 18:17
1
1
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
This one appears to be simplest possible answer. +1 It is as if you see the result in question at the level of $1 + r + r^{2} + cdots = 1/(1 - r)$.
– Paramanand Singh
Jun 20 '16 at 10:29
add a comment |
up vote
37
down vote
The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$
Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$
But $cot left(frac{pi}{2} right)=0$.
Therefore,
$$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
add a comment |
up vote
37
down vote
The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$
Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$
But $cot left(frac{pi}{2} right)=0$.
Therefore,
$$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
add a comment |
up vote
37
down vote
up vote
37
down vote
The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$
Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$
But $cot left(frac{pi}{2} right)=0$.
Therefore,
$$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$
The Laurent expansion of $cot (z)$ at the origin in terms of the Riemann zeta function is $$ cot (z) = frac{1}{z} - 2 sum_{k=1}^{infty}zeta(2k) frac{z^{2k-1}}{pi^{2k}} , 0 < |z| < pi. $$
Letting $ displaystyle z= frac{pi}{2}$, $$cot left(frac{pi}{2} right) = frac{2}{pi} - frac{2}{pi} sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}}.$$
But $cot left(frac{pi}{2} right)=0$.
Therefore,
$$ sum_{k=1}^{infty} frac{zeta(2k)}{2^{2k-1}} = 1.$$
edited Dec 24 '14 at 22:33
answered Dec 24 '14 at 22:27
Random Variable
25.3k170136
25.3k170136
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
add a comment |
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
+1. Nice. I was doing something like that with identities $color{black}{bf 6.3.14}$ and $color{black}{bf 6.3.15}$ but I left because it was cumbersome.
– Felix Marin
Dec 24 '14 at 22:54
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
@FelixMarin Thanks. This actually wasn't my first approach.
– Random Variable
Dec 24 '14 at 23:20
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
(+1) Beautiful approach! This relation is also proven in this answer.
– robjohn♦
Dec 25 '14 at 0:06
add a comment |
up vote
9
down vote
$newcommand{angles}[1]{leftlangle{#1}rightrangle}
newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left({#1}right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert{#1}rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
\[3mm] = &
-sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
\ = &
-bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
\[3mm] & - bracks{%
{1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
\[8mm] = &
-Psipars{half} - {2 over 3} +
underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
{1 over 3} = color{#f00}{1}
end{align}
$Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.
add a comment |
up vote
9
down vote
$newcommand{angles}[1]{leftlangle{#1}rightrangle}
newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left({#1}right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert{#1}rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
\[3mm] = &
-sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
\ = &
-bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
\[3mm] & - bracks{%
{1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
\[8mm] = &
-Psipars{half} - {2 over 3} +
underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
{1 over 3} = color{#f00}{1}
end{align}
$Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.
add a comment |
up vote
9
down vote
up vote
9
down vote
$newcommand{angles}[1]{leftlangle{#1}rightrangle}
newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left({#1}right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert{#1}rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
\[3mm] = &
-sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
\ = &
-bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
\[3mm] & - bracks{%
{1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
\[8mm] = &
-Psipars{half} - {2 over 3} +
underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
{1 over 3} = color{#f00}{1}
end{align}
$Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.
$newcommand{angles}[1]{leftlangle{#1}rightrangle}
newcommand{braces}[1]{leftlbrace{#1}rightrbrace}
newcommand{bracks}[1]{leftlbrack{#1}rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left({#1}right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert{#1}rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{n = 1}^{infty}{zetapars{2n} over 2^{2n - 1}}} =
sum_{n = 2}^{infty}{zetapars{n} over 2^{n - 1}} - sum_{n = 1}^{infty}{zetapars{2n + 1} over 2^{2n}}
\[3mm] = &
-sum_{n = 2}^{infty}pars{-1}^{n}zetapars{n}pars{-,half}^{n - 1} -
sum_{n = 1}^{infty}bracks{zetapars{2n + 1} - 1}pars{half}^{2n} -
underbrace{sum_{n = 1}^{infty}pars{half}^{2n}}_{ds{1 over 3}}
\ = &
-bracks{Psipars{1 + z} + gamma}_{ z = -1/2}
\[3mm] & - bracks{%
{1 over 2z} - half,picotpars{pi z} - {1 over 1 - z^{2}} + 1 - gamma - Psipars{1 + z}}_{ z = 1/2} - {1 over 3}
\[8mm] = &
-Psipars{half} - {2 over 3} +
underbrace{Psipars{3 over 2}}_{ds{Psipars{1/2} + 1/pars{1/2}}} -
{1 over 3} = color{#f00}{1}
end{align}
$Psi$ and $gamma$ are the Digamma function and the Euler-Mascheroni constant, respectively. We used the Digamma Recurrence Formula $ds{Psipars{z + 1} = Psipars{z} + 1/z}$ and the identities $mathbf{6.3.14}$ and $mathbf{6.3.15}$ in this link.
edited Nov 19 at 22:52
answered Jun 19 '16 at 19:42
Felix Marin
65.8k7107138
65.8k7107138
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1080000%2fhow-to-prove-that-frac-zeta2-2-frac-zeta-423-frac-zeta-62%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
12
I think this is a normal question. I don't know why "on hold"?
– E.H.E
Dec 24 '14 at 19:28
2
There is a recursive formula for $zeta(2n)$ derived in this answer. However, in that answer it is shown that $$sum_{k=1}^inftyzeta(2k)x^{2k}=frac12(1-pi xcot(pi x))$$ With $x=frac12$, this immediately gives $$sum_{k=1}^inftyzeta(2k)left(frac12right)^{2k-1} =1-fracpi2cotleft(fracpi2right)=1$$ This is what is used in Random Variable's answer.
– robjohn♦
Dec 31 '14 at 18:13