Poisson and convergence in distribution











up vote
0
down vote

favorite
1












Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.



(a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$



(b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$



(c) For which random variables $X$ will the two limits be the same?



My solution:
Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$



where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite
    1












    Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.



    (a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$



    (b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$



    (c) For which random variables $X$ will the two limits be the same?



    My solution:
    Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$



    where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.



      (a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$



      (b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$



      (c) For which random variables $X$ will the two limits be the same?



      My solution:
      Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$



      where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?










      share|cite|improve this question













      Let $X_1,X_2,...$ be iid with mean $mu$ and variance $sigma^2$. Let $N_{lambda}$ be poisson($lambda$) independent of the $X_i$'s.



      (a) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-N_{lambda}mu}{sqrt{lambda}}.$$



      (b) Find the limit in distribution as $lambda rightarrow infty$ for $$frac{sum_{i=1}^{N_{lambda}}X_i-lambdamu}{sqrt{lambda}}.$$



      (c) For which random variables $X$ will the two limits be the same?



      My solution:
      Let $Y_{lambda}$ be the quotient given in the problem. Then $mathbb{E}e^{it Y_{lambda}}=sum_{n=0}^{infty}mathbb{E}(e^{itY_{lambda}}1_{N_{lambda}=n})=sum_{n=0}^{infty}(phi_{X'_1}(frac{t}{lambda} ))^nfrac{e^{-lambda} lambda^n}{n!}=sum_{n=0}^{infty}(1-sigma^2frac{t^2}{2lambda^2}+o(frac{t^2}{lambda^2}))^n frac{e^{-lambda}lambda^n}{n!}$



      where $X'=X-mu$. Can the above sum be simplified as $lambda$ goes to $infty$?







      real-analysis probability-theory characteristic-functions poisson-process






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 7 hours ago









      S_Alex

      608




      608



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004584%2fpoisson-and-convergence-in-distribution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004584%2fpoisson-and-convergence-in-distribution%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen