How to build a matrix out of one equation so that it can be solved with Gaussian elimination?
up vote
0
down vote
favorite
Find such
$ a, b, c, d ∈ ℝ $ that
$a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$
$∀x ∈ ℝ$ using Gauss' elimination.
How to get from the one equation to such matrix that Gaussian elimination can be used?
linear-algebra matrices gaussian-elimination
add a comment |
up vote
0
down vote
favorite
Find such
$ a, b, c, d ∈ ℝ $ that
$a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$
$∀x ∈ ℝ$ using Gauss' elimination.
How to get from the one equation to such matrix that Gaussian elimination can be used?
linear-algebra matrices gaussian-elimination
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Find such
$ a, b, c, d ∈ ℝ $ that
$a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$
$∀x ∈ ℝ$ using Gauss' elimination.
How to get from the one equation to such matrix that Gaussian elimination can be used?
linear-algebra matrices gaussian-elimination
Find such
$ a, b, c, d ∈ ℝ $ that
$a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$
$∀x ∈ ℝ$ using Gauss' elimination.
How to get from the one equation to such matrix that Gaussian elimination can be used?
linear-algebra matrices gaussian-elimination
linear-algebra matrices gaussian-elimination
asked Oct 31 at 23:50
jasno1
1
1
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
0
down vote
Hint:
Calculating the coefficients in each degree, you have to solve the system of linear equations:
[begin{cases}begin{aligned}
a +b+d&=0\
-a+b+2d&=0\
a+3b+2c&=0 \
a+2b -c+2d&=7
end{aligned} end{cases}
Can you take it from there?
add a comment |
up vote
0
down vote
We have the following constraint
- The coefficient of $x^3$ must be zero. ($a+b+d=0$)
- The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)
- The coefficient of $x$ must be zero. ($a+3b+3c=0$)
- The constant value must be zero. ($-a-2b+c-2d+7=0$)
In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$
$$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$
$$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply
$$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$
Let's continue what we were doing
$$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to
$$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Hint:
Calculating the coefficients in each degree, you have to solve the system of linear equations:
[begin{cases}begin{aligned}
a +b+d&=0\
-a+b+2d&=0\
a+3b+2c&=0 \
a+2b -c+2d&=7
end{aligned} end{cases}
Can you take it from there?
add a comment |
up vote
0
down vote
Hint:
Calculating the coefficients in each degree, you have to solve the system of linear equations:
[begin{cases}begin{aligned}
a +b+d&=0\
-a+b+2d&=0\
a+3b+2c&=0 \
a+2b -c+2d&=7
end{aligned} end{cases}
Can you take it from there?
add a comment |
up vote
0
down vote
up vote
0
down vote
Hint:
Calculating the coefficients in each degree, you have to solve the system of linear equations:
[begin{cases}begin{aligned}
a +b+d&=0\
-a+b+2d&=0\
a+3b+2c&=0 \
a+2b -c+2d&=7
end{aligned} end{cases}
Can you take it from there?
Hint:
Calculating the coefficients in each degree, you have to solve the system of linear equations:
[begin{cases}begin{aligned}
a +b+d&=0\
-a+b+2d&=0\
a+3b+2c&=0 \
a+2b -c+2d&=7
end{aligned} end{cases}
Can you take it from there?
answered Nov 1 at 0:06
Bernard
117k637109
117k637109
add a comment |
add a comment |
up vote
0
down vote
We have the following constraint
- The coefficient of $x^3$ must be zero. ($a+b+d=0$)
- The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)
- The coefficient of $x$ must be zero. ($a+3b+3c=0$)
- The constant value must be zero. ($-a-2b+c-2d+7=0$)
In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$
$$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$
$$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply
$$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$
Let's continue what we were doing
$$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to
$$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$
add a comment |
up vote
0
down vote
We have the following constraint
- The coefficient of $x^3$ must be zero. ($a+b+d=0$)
- The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)
- The coefficient of $x$ must be zero. ($a+3b+3c=0$)
- The constant value must be zero. ($-a-2b+c-2d+7=0$)
In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$
$$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$
$$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply
$$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$
Let's continue what we were doing
$$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to
$$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$
add a comment |
up vote
0
down vote
up vote
0
down vote
We have the following constraint
- The coefficient of $x^3$ must be zero. ($a+b+d=0$)
- The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)
- The coefficient of $x$ must be zero. ($a+3b+3c=0$)
- The constant value must be zero. ($-a-2b+c-2d+7=0$)
In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$
$$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$
$$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply
$$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$
Let's continue what we were doing
$$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to
$$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$
We have the following constraint
- The coefficient of $x^3$ must be zero. ($a+b+d=0$)
- The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)
- The coefficient of $x$ must be zero. ($a+3b+3c=0$)
- The constant value must be zero. ($-a-2b+c-2d+7=0$)
In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$
$$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$
$$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply
$$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$
Let's continue what we were doing
$$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to
$$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$
answered Nov 24 at 17:04
Mostafa Ayaz
13.4k3836
13.4k3836
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979797%2fhow-to-build-a-matrix-out-of-one-equation-so-that-it-can-be-solved-with-gaussian%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown