How to build a matrix out of one equation so that it can be solved with Gaussian elimination?











up vote
0
down vote

favorite












Find such
$ a, b, c, d ∈ ℝ $ that



$a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



$∀x ∈ ℝ$ using Gauss' elimination.



How to get from the one equation to such matrix that Gaussian elimination can be used?










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    Find such
    $ a, b, c, d ∈ ℝ $ that



    $a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



    $∀x ∈ ℝ$ using Gauss' elimination.



    How to get from the one equation to such matrix that Gaussian elimination can be used?










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Find such
      $ a, b, c, d ∈ ℝ $ that



      $a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



      $∀x ∈ ℝ$ using Gauss' elimination.



      How to get from the one equation to such matrix that Gaussian elimination can be used?










      share|cite|improve this question













      Find such
      $ a, b, c, d ∈ ℝ $ that



      $a(x^3 − x^2 + x − 1) + b(x^3 + x^2 + 3x−2) + c(x^2 + 3x + 1) +d(x^3 + 2x^2 − 2) + 7 = 0$



      $∀x ∈ ℝ$ using Gauss' elimination.



      How to get from the one equation to such matrix that Gaussian elimination can be used?







      linear-algebra matrices gaussian-elimination






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Oct 31 at 23:50









      jasno1

      1




      1






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          0
          down vote













          Hint:



          Calculating the coefficients in each degree, you have to solve the system of linear equations:
          [begin{cases}begin{aligned}
          a +b+d&=0\
          -a+b+2d&=0\
          a+3b+2c&=0 \
          a+2b -c+2d&=7
          end{aligned} end{cases}

          Can you take it from there?






          share|cite|improve this answer




























            up vote
            0
            down vote













            We have the following constraint




            • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

            • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

            • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

            • The constant value must be zero. ($-a-2b+c-2d+7=0$)


            In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



            $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



            $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



            $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



            Let's continue what we were doing



            $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



            $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979797%2fhow-to-build-a-matrix-out-of-one-equation-so-that-it-can-be-solved-with-gaussian%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              0
              down vote













              Hint:



              Calculating the coefficients in each degree, you have to solve the system of linear equations:
              [begin{cases}begin{aligned}
              a +b+d&=0\
              -a+b+2d&=0\
              a+3b+2c&=0 \
              a+2b -c+2d&=7
              end{aligned} end{cases}

              Can you take it from there?






              share|cite|improve this answer

























                up vote
                0
                down vote













                Hint:



                Calculating the coefficients in each degree, you have to solve the system of linear equations:
                [begin{cases}begin{aligned}
                a +b+d&=0\
                -a+b+2d&=0\
                a+3b+2c&=0 \
                a+2b -c+2d&=7
                end{aligned} end{cases}

                Can you take it from there?






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Hint:



                  Calculating the coefficients in each degree, you have to solve the system of linear equations:
                  [begin{cases}begin{aligned}
                  a +b+d&=0\
                  -a+b+2d&=0\
                  a+3b+2c&=0 \
                  a+2b -c+2d&=7
                  end{aligned} end{cases}

                  Can you take it from there?






                  share|cite|improve this answer












                  Hint:



                  Calculating the coefficients in each degree, you have to solve the system of linear equations:
                  [begin{cases}begin{aligned}
                  a +b+d&=0\
                  -a+b+2d&=0\
                  a+3b+2c&=0 \
                  a+2b -c+2d&=7
                  end{aligned} end{cases}

                  Can you take it from there?







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 1 at 0:06









                  Bernard

                  117k637109




                  117k637109






















                      up vote
                      0
                      down vote













                      We have the following constraint




                      • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                      • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                      • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                      • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                      In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                      $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                      $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                      $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                      Let's continue what we were doing



                      $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                      $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






                      share|cite|improve this answer

























                        up vote
                        0
                        down vote













                        We have the following constraint




                        • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                        • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                        • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                        • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                        In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                        $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                        $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                        $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                        Let's continue what we were doing



                        $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                        $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






                        share|cite|improve this answer























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          We have the following constraint




                          • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                          • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                          • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                          • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                          In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                          $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                          $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                          $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                          Let's continue what we were doing



                          $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                          $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$






                          share|cite|improve this answer












                          We have the following constraint




                          • The coefficient of $x^3$ must be zero. ($a+b+d=0$)

                          • The coefficient of $x^2$ must be zero. ($-a+b+c+2d=0$)

                          • The coefficient of $x$ must be zero. ($a+3b+3c=0$)

                          • The constant value must be zero. ($-a-2b+c-2d+7=0$)


                          In matrix form:$$begin{bmatrix}1&1&0&1\-1&1&1&2\1&3&3&0\-1&-2&1&-2end{bmatrix}begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}0\0\0\-7end{bmatrix}$$Therefore we need to perform operations on the following matrix$$begin{bmatrix}1&1&0&1&0\-1&1&1&2&0\1&3&3&0&0\-1&-2&1&-2&-7end{bmatrix}$$as below$$begin{bmatrix}1&1&0&1&0\0&2&1&3&0\0&2&3&-1&0\0&-1&1&-1&-7end{bmatrix}$$



                          $$begin{bmatrix}2&0&-1&-1&0\0&2&1&3&0\0&0&2&-4&0\0&0&3&1&-14end{bmatrix}$$



                          $$begin{bmatrix}4&0&0&-6&0\0&4&0&10&0\0&0&2&-4&0\0&0&0&14&-28end{bmatrix}$$or simply



                          $$begin{bmatrix}2&0&0&-3&0\0&2&0&5&0\0&0&1&-2&0\0&0&0&1&-2end{bmatrix}$$



                          Let's continue what we were doing



                          $$begin{bmatrix}2&0&0&0&-6\0&2&0&0&10\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$which finally yields to



                          $$begin{bmatrix}1&0&0&0&-3\0&1&0&0&5\0&0&1&0&-4\0&0&0&1&-2end{bmatrix}$$and at last$$begin{bmatrix}a\b\c\dend{bmatrix}=begin{bmatrix}-3\5\-4\-2end{bmatrix}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 24 at 17:04









                          Mostafa Ayaz

                          13.4k3836




                          13.4k3836






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2979797%2fhow-to-build-a-matrix-out-of-one-equation-so-that-it-can-be-solved-with-gaussian%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Wiesbaden

                              Marschland

                              Dieringhausen