Inequality proof (Hilbert space)
up vote
-1
down vote
favorite
Show that if H is a Hilbert space, then: $$Vert(x+y)Vert^2 - Vert(x - y)Vert^2 le 4 Vert xVert Vert yVert, $$ for all $x, y in H. $
inequality hilbert-spaces
add a comment |
up vote
-1
down vote
favorite
Show that if H is a Hilbert space, then: $$Vert(x+y)Vert^2 - Vert(x - y)Vert^2 le 4 Vert xVert Vert yVert, $$ for all $x, y in H. $
inequality hilbert-spaces
add a comment |
up vote
-1
down vote
favorite
up vote
-1
down vote
favorite
Show that if H is a Hilbert space, then: $$Vert(x+y)Vert^2 - Vert(x - y)Vert^2 le 4 Vert xVert Vert yVert, $$ for all $x, y in H. $
inequality hilbert-spaces
Show that if H is a Hilbert space, then: $$Vert(x+y)Vert^2 - Vert(x - y)Vert^2 le 4 Vert xVert Vert yVert, $$ for all $x, y in H. $
inequality hilbert-spaces
inequality hilbert-spaces
asked Nov 24 at 17:02
Loreen
32
32
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Observe that
$$ Vert xpm yVert^2 = langle xpm y,xpm y rangle = Vert x Vert^2 pm 2Re langle x, y rangle + Vert yVert^2, $$
so that
$$ Vert x + yVert^2 - Vert x - yVert^2 = 4 Relangle x, y rangle. $$
Now apply Cauchy-Schwarz.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Observe that
$$ Vert xpm yVert^2 = langle xpm y,xpm y rangle = Vert x Vert^2 pm 2Re langle x, y rangle + Vert yVert^2, $$
so that
$$ Vert x + yVert^2 - Vert x - yVert^2 = 4 Relangle x, y rangle. $$
Now apply Cauchy-Schwarz.
add a comment |
up vote
0
down vote
accepted
Observe that
$$ Vert xpm yVert^2 = langle xpm y,xpm y rangle = Vert x Vert^2 pm 2Re langle x, y rangle + Vert yVert^2, $$
so that
$$ Vert x + yVert^2 - Vert x - yVert^2 = 4 Relangle x, y rangle. $$
Now apply Cauchy-Schwarz.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Observe that
$$ Vert xpm yVert^2 = langle xpm y,xpm y rangle = Vert x Vert^2 pm 2Re langle x, y rangle + Vert yVert^2, $$
so that
$$ Vert x + yVert^2 - Vert x - yVert^2 = 4 Relangle x, y rangle. $$
Now apply Cauchy-Schwarz.
Observe that
$$ Vert xpm yVert^2 = langle xpm y,xpm y rangle = Vert x Vert^2 pm 2Re langle x, y rangle + Vert yVert^2, $$
so that
$$ Vert x + yVert^2 - Vert x - yVert^2 = 4 Relangle x, y rangle. $$
Now apply Cauchy-Schwarz.
answered Nov 24 at 17:06
MisterRiemann
5,5941623
5,5941623
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011802%2finequality-proof-hilbert-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown