If $E[h(M_n)]to h(x)$ for all bounded and continuous functions $h$ then $M_nto x$ in probability
Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
$$mathbb{E}[h(M_n)]to h(x)$$
as $ntoinfty$ for all bounded and continuous functions $h$.
How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?
What I thought:
Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.
Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?
probability-theory random-variables weak-convergence
add a comment |
Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
$$mathbb{E}[h(M_n)]to h(x)$$
as $ntoinfty$ for all bounded and continuous functions $h$.
How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?
What I thought:
Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.
Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?
probability-theory random-variables weak-convergence
add a comment |
Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
$$mathbb{E}[h(M_n)]to h(x)$$
as $ntoinfty$ for all bounded and continuous functions $h$.
How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?
What I thought:
Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.
Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?
probability-theory random-variables weak-convergence
Let $M_n$ be a sequence of random variables and let $xinmathbb{R}$ such that
$$mathbb{E}[h(M_n)]to h(x)$$
as $ntoinfty$ for all bounded and continuous functions $h$.
How to show that for all $delta>0$ we have $mathbb{P}(|M_n-x|>delta)to0$?
What I thought:
Convergence of $mathbb{E}[h(M_n)]$ means that for all $epsilon>0$ there is an $Ngeq0$ such that $mathbb{E}[h(M_n)-h(x)]<epsilon$.
Further we hav $mathbb{P}(|M_n-x|>delta)=mathbb{E}[1_{|M_n-x|>delta}]$, however the indicator function is not continuous. How do I fix this?
probability-theory random-variables weak-convergence
probability-theory random-variables weak-convergence
edited Dec 4 '18 at 18:34
Did
246k23221456
246k23221456
asked Dec 4 '18 at 9:51
Yaroslav MlynárYaroslav Mlynár
253
253
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.
Direct proof. For any $delta>0$,
begin{align}
mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
&le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
end{align}
where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
$$
1+h_{delta}(0)-h_{delta}(delta)=0.
$$
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025363%2fif-ehm-n-to-hx-for-all-bounded-and-continuous-functions-h-then-m-n-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.
Direct proof. For any $delta>0$,
begin{align}
mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
&le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
end{align}
where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
$$
1+h_{delta}(0)-h_{delta}(delta)=0.
$$
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
add a comment |
The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.
Direct proof. For any $delta>0$,
begin{align}
mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
&le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
end{align}
where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
$$
1+h_{delta}(0)-h_{delta}(delta)=0.
$$
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
add a comment |
The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.
Direct proof. For any $delta>0$,
begin{align}
mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
&le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
end{align}
where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
$$
1+h_{delta}(0)-h_{delta}(delta)=0.
$$
The stated assumption implies that $M_nxrightarrow{d}x$ and, thus, $M_nxrightarrow{p} x$.
Direct proof. For any $delta>0$,
begin{align}
mathsf{P}(|M_n-x|>delta)&=mathsf{P}(M_n>x+delta)+mathsf{P}(M_n<x-delta) \
&le 1+mathsf{E}h_{delta}(M_n-x)-mathsf{E}h_{delta}(M_n+delta-x),tag{1}
end{align}
where $h_delta(v):=1wedge(0vee v/delta)$. Since $h_{delta}$ is a continuous bounded function, $(1)$ converges to
$$
1+h_{delta}(0)-h_{delta}(delta)=0.
$$
edited Dec 4 '18 at 18:14
answered Dec 4 '18 at 10:06
d.k.o.d.k.o.
8,622528
8,622528
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
add a comment |
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
But I do not want to use convergence in distribution, I would prefer to prove this without using the implications you give, i.e. without the portmanteau lemma
– Yaroslav Mlynár
Dec 4 '18 at 10:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025363%2fif-ehm-n-to-hx-for-all-bounded-and-continuous-functions-h-then-m-n-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown