Find the minimum of $|z+frac{1}{z}|$ for $|z|ge2$












0












$begingroup$


Find the least value assumed by the function $w=|z+frac{1}{z}|$ where $,|z|ge2$





Attempt

By triangular inequality,$|z+frac{1}{z}|ge ||z|-|frac{1}{z}||$

$|z|ge2......................(1)$
$|frac{1}{z}|lefrac{1}{2}$
$-|frac{1}{z}|gefrac{-1}{2}.........(2)$

$|z|-|frac{1}{z}|ge2-frac{1}{2}$

$|z|-|frac{1}{z}|gefrac{3}{2}$

so $|z+frac{1}{z}|ge frac{3}{2}$

But the answer given in my book is $-frac{1}{8}$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $-frac 18$ or $+frac 18$? Absolute value cannot be negative.
    $endgroup$
    – user376343
    Dec 18 '18 at 14:01










  • $begingroup$
    A negative answer must be wrong, and I find your calculations persuasive: $z=pm2i$ will give $frac32$
    $endgroup$
    – Henry
    Dec 18 '18 at 14:01
















0












$begingroup$


Find the least value assumed by the function $w=|z+frac{1}{z}|$ where $,|z|ge2$





Attempt

By triangular inequality,$|z+frac{1}{z}|ge ||z|-|frac{1}{z}||$

$|z|ge2......................(1)$
$|frac{1}{z}|lefrac{1}{2}$
$-|frac{1}{z}|gefrac{-1}{2}.........(2)$

$|z|-|frac{1}{z}|ge2-frac{1}{2}$

$|z|-|frac{1}{z}|gefrac{3}{2}$

so $|z+frac{1}{z}|ge frac{3}{2}$

But the answer given in my book is $-frac{1}{8}$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    $-frac 18$ or $+frac 18$? Absolute value cannot be negative.
    $endgroup$
    – user376343
    Dec 18 '18 at 14:01










  • $begingroup$
    A negative answer must be wrong, and I find your calculations persuasive: $z=pm2i$ will give $frac32$
    $endgroup$
    – Henry
    Dec 18 '18 at 14:01














0












0








0





$begingroup$


Find the least value assumed by the function $w=|z+frac{1}{z}|$ where $,|z|ge2$





Attempt

By triangular inequality,$|z+frac{1}{z}|ge ||z|-|frac{1}{z}||$

$|z|ge2......................(1)$
$|frac{1}{z}|lefrac{1}{2}$
$-|frac{1}{z}|gefrac{-1}{2}.........(2)$

$|z|-|frac{1}{z}|ge2-frac{1}{2}$

$|z|-|frac{1}{z}|gefrac{3}{2}$

so $|z+frac{1}{z}|ge frac{3}{2}$

But the answer given in my book is $-frac{1}{8}$










share|cite|improve this question











$endgroup$




Find the least value assumed by the function $w=|z+frac{1}{z}|$ where $,|z|ge2$





Attempt

By triangular inequality,$|z+frac{1}{z}|ge ||z|-|frac{1}{z}||$

$|z|ge2......................(1)$
$|frac{1}{z}|lefrac{1}{2}$
$-|frac{1}{z}|gefrac{-1}{2}.........(2)$

$|z|-|frac{1}{z}|ge2-frac{1}{2}$

$|z|-|frac{1}{z}|gefrac{3}{2}$

so $|z+frac{1}{z}|ge frac{3}{2}$

But the answer given in my book is $-frac{1}{8}$







complex-numbers






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 18 '18 at 14:58









Did

248k23224463




248k23224463










asked Dec 18 '18 at 13:58









user984325user984325

246112




246112








  • 1




    $begingroup$
    $-frac 18$ or $+frac 18$? Absolute value cannot be negative.
    $endgroup$
    – user376343
    Dec 18 '18 at 14:01










  • $begingroup$
    A negative answer must be wrong, and I find your calculations persuasive: $z=pm2i$ will give $frac32$
    $endgroup$
    – Henry
    Dec 18 '18 at 14:01














  • 1




    $begingroup$
    $-frac 18$ or $+frac 18$? Absolute value cannot be negative.
    $endgroup$
    – user376343
    Dec 18 '18 at 14:01










  • $begingroup$
    A negative answer must be wrong, and I find your calculations persuasive: $z=pm2i$ will give $frac32$
    $endgroup$
    – Henry
    Dec 18 '18 at 14:01








1




1




$begingroup$
$-frac 18$ or $+frac 18$? Absolute value cannot be negative.
$endgroup$
– user376343
Dec 18 '18 at 14:01




$begingroup$
$-frac 18$ or $+frac 18$? Absolute value cannot be negative.
$endgroup$
– user376343
Dec 18 '18 at 14:01












$begingroup$
A negative answer must be wrong, and I find your calculations persuasive: $z=pm2i$ will give $frac32$
$endgroup$
– Henry
Dec 18 '18 at 14:01




$begingroup$
A negative answer must be wrong, and I find your calculations persuasive: $z=pm2i$ will give $frac32$
$endgroup$
– Henry
Dec 18 '18 at 14:01










1 Answer
1






active

oldest

votes


















4












$begingroup$

Let $r = |z| ge 2$ then



$w=|z+frac{1}{z}| = |r e^{i phi}+frac{1}{r} e^{-i phi}|= r |1 +frac{1}{r^2} e^{-2 i phi}|$.



Now the minimum w.r.t. $phi$ is obtained for $phi = pi/2$ and we get



$w ge r |1 -frac{1}{r^2}| = r - 1/r$.



Now for $r ge 2$, the last expression takes its lowest value at the boundary, i.e. at $r=2$, which gives $3/2$. This is tight, since $z = 2 i $ gives exactly that result.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045193%2ffind-the-minimum-of-z-frac1z-for-z-ge2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Let $r = |z| ge 2$ then



    $w=|z+frac{1}{z}| = |r e^{i phi}+frac{1}{r} e^{-i phi}|= r |1 +frac{1}{r^2} e^{-2 i phi}|$.



    Now the minimum w.r.t. $phi$ is obtained for $phi = pi/2$ and we get



    $w ge r |1 -frac{1}{r^2}| = r - 1/r$.



    Now for $r ge 2$, the last expression takes its lowest value at the boundary, i.e. at $r=2$, which gives $3/2$. This is tight, since $z = 2 i $ gives exactly that result.






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      Let $r = |z| ge 2$ then



      $w=|z+frac{1}{z}| = |r e^{i phi}+frac{1}{r} e^{-i phi}|= r |1 +frac{1}{r^2} e^{-2 i phi}|$.



      Now the minimum w.r.t. $phi$ is obtained for $phi = pi/2$ and we get



      $w ge r |1 -frac{1}{r^2}| = r - 1/r$.



      Now for $r ge 2$, the last expression takes its lowest value at the boundary, i.e. at $r=2$, which gives $3/2$. This is tight, since $z = 2 i $ gives exactly that result.






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        Let $r = |z| ge 2$ then



        $w=|z+frac{1}{z}| = |r e^{i phi}+frac{1}{r} e^{-i phi}|= r |1 +frac{1}{r^2} e^{-2 i phi}|$.



        Now the minimum w.r.t. $phi$ is obtained for $phi = pi/2$ and we get



        $w ge r |1 -frac{1}{r^2}| = r - 1/r$.



        Now for $r ge 2$, the last expression takes its lowest value at the boundary, i.e. at $r=2$, which gives $3/2$. This is tight, since $z = 2 i $ gives exactly that result.






        share|cite|improve this answer











        $endgroup$



        Let $r = |z| ge 2$ then



        $w=|z+frac{1}{z}| = |r e^{i phi}+frac{1}{r} e^{-i phi}|= r |1 +frac{1}{r^2} e^{-2 i phi}|$.



        Now the minimum w.r.t. $phi$ is obtained for $phi = pi/2$ and we get



        $w ge r |1 -frac{1}{r^2}| = r - 1/r$.



        Now for $r ge 2$, the last expression takes its lowest value at the boundary, i.e. at $r=2$, which gives $3/2$. This is tight, since $z = 2 i $ gives exactly that result.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 19 '18 at 7:36

























        answered Dec 18 '18 at 14:44









        AndreasAndreas

        8,1131037




        8,1131037






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045193%2ffind-the-minimum-of-z-frac1z-for-z-ge2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Wiesbaden

            Marschland

            Dieringhausen