How is the bijection obtained?












0












$begingroup$


I am reading in Serge Lang's book " Introduction to Modular Forms " .
On page 8 there is written that there is a bijection between functions of lattices , homogenous of degree -k and functions g on H ( the upper half plane ) satisfying the condition $$ g(alpha(z))=(cz+d)^kg(z) (1) , $$
but I do not understand how it is obtained . I think the second part says :
Given a function g satisfying (1) .Define $$ G(z,1)=Gbegin{pmatrix}
z\
1\
end{pmatrix}=g(z) , $$

$$ where we consider the lattice [z,1] . Then for any lattice L=[omega_1,omega_2] we have \ g(frac{omega_1}{omega_2})=Gbegin{pmatrix}
frac{omega_1}{omega_2}\
1\
end{pmatrix}=omega_2^kGbegin{pmatrix}
omega_1\
omega_2\
end{pmatrix}=omega_2^kG(L)
Longrightarrow G(L)=omega_2^{-k}g(frac{omega_1}{omega_2})Longrightarrow G(lambda L)=lambda^{-k}G(L)
$$

But the first part I do not know how to show .
Thanks for helping !










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I am reading in Serge Lang's book " Introduction to Modular Forms " .
    On page 8 there is written that there is a bijection between functions of lattices , homogenous of degree -k and functions g on H ( the upper half plane ) satisfying the condition $$ g(alpha(z))=(cz+d)^kg(z) (1) , $$
    but I do not understand how it is obtained . I think the second part says :
    Given a function g satisfying (1) .Define $$ G(z,1)=Gbegin{pmatrix}
    z\
    1\
    end{pmatrix}=g(z) , $$

    $$ where we consider the lattice [z,1] . Then for any lattice L=[omega_1,omega_2] we have \ g(frac{omega_1}{omega_2})=Gbegin{pmatrix}
    frac{omega_1}{omega_2}\
    1\
    end{pmatrix}=omega_2^kGbegin{pmatrix}
    omega_1\
    omega_2\
    end{pmatrix}=omega_2^kG(L)
    Longrightarrow G(L)=omega_2^{-k}g(frac{omega_1}{omega_2})Longrightarrow G(lambda L)=lambda^{-k}G(L)
    $$

    But the first part I do not know how to show .
    Thanks for helping !










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I am reading in Serge Lang's book " Introduction to Modular Forms " .
      On page 8 there is written that there is a bijection between functions of lattices , homogenous of degree -k and functions g on H ( the upper half plane ) satisfying the condition $$ g(alpha(z))=(cz+d)^kg(z) (1) , $$
      but I do not understand how it is obtained . I think the second part says :
      Given a function g satisfying (1) .Define $$ G(z,1)=Gbegin{pmatrix}
      z\
      1\
      end{pmatrix}=g(z) , $$

      $$ where we consider the lattice [z,1] . Then for any lattice L=[omega_1,omega_2] we have \ g(frac{omega_1}{omega_2})=Gbegin{pmatrix}
      frac{omega_1}{omega_2}\
      1\
      end{pmatrix}=omega_2^kGbegin{pmatrix}
      omega_1\
      omega_2\
      end{pmatrix}=omega_2^kG(L)
      Longrightarrow G(L)=omega_2^{-k}g(frac{omega_1}{omega_2})Longrightarrow G(lambda L)=lambda^{-k}G(L)
      $$

      But the first part I do not know how to show .
      Thanks for helping !










      share|cite|improve this question









      $endgroup$




      I am reading in Serge Lang's book " Introduction to Modular Forms " .
      On page 8 there is written that there is a bijection between functions of lattices , homogenous of degree -k and functions g on H ( the upper half plane ) satisfying the condition $$ g(alpha(z))=(cz+d)^kg(z) (1) , $$
      but I do not understand how it is obtained . I think the second part says :
      Given a function g satisfying (1) .Define $$ G(z,1)=Gbegin{pmatrix}
      z\
      1\
      end{pmatrix}=g(z) , $$

      $$ where we consider the lattice [z,1] . Then for any lattice L=[omega_1,omega_2] we have \ g(frac{omega_1}{omega_2})=Gbegin{pmatrix}
      frac{omega_1}{omega_2}\
      1\
      end{pmatrix}=omega_2^kGbegin{pmatrix}
      omega_1\
      omega_2\
      end{pmatrix}=omega_2^kG(L)
      Longrightarrow G(L)=omega_2^{-k}g(frac{omega_1}{omega_2})Longrightarrow G(lambda L)=lambda^{-k}G(L)
      $$

      But the first part I do not know how to show .
      Thanks for helping !







      modular-forms modular-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 5 '18 at 21:26









      MatilloMatillo

      147




      147






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027675%2fhow-is-the-bijection-obtained%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027675%2fhow-is-the-bijection-obtained%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Wiesbaden

          Marschland

          Dieringhausen