Unknown label type: array in sklearn
I have problems with sklearn MLPClassifier fit and I receive this error:
this is my dataset:
x y z
0 -35.997271 -16.594561 4.142350
1 -1.587584 -6.526561 0.212667
2 -15.775675 -30.170914 0.370804
3 -22.165420 -0.892974 0.161097
4 -13.913515 -16.396032 9.223847
I have splited the X and y train and test data:
x = np.array(df.drop(['z'],1))
y = np.array(df['z'])
x = preprocessing.scale(x)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(x,y, test_size=0.2)
and finally run the mlpclassifier and fit function:
mlp = MLPClassifier(hidden_layer_sizes=(13,13,13), max_iter=500)
mlp.fit(X_train, y_train)
but I received this error:
Unknown label type: (array([ 2.36, 9.88, 6.93, 1.27, 6.64, 4.7 , 4.72, 4.66, 10.45,
9.78, 3.97, 10.25, 0.45, 0.07, 7.79, 3.43, 0.71, 2.82,
7.67, 0.43, 4.48, 8.62, 0.56, 3.57, 6.85, 2.75, 3.37,
3.24, 2.41, 0.31, 5.51, 6.13, 9.48, 2.02, 0.13, 8.8 ,
0.37, 5.44, 5.05, 7.96, 4.56, 6.87, 2.93, 8.86, 10.2 ,
1.61, 4.26, 4.5 , 6.11, 10.05, 2.1 , 5.82, 2.69, 7.13,
1.47, 1.79, 1.86, 7.2 , 0.5 , 0.58, 0.16, 5.78, 6.02,
0.97, 7.05, 6.3 , 0.97, 5.04, 9.51, 2.88, 3.89, 8.82,
0.09, 8.37, 1.46, 9.22, 0.09, 4.8 , 0. , 6.16]),)
any ideas for solving this problem?
arrays scikit-learn valueerror
add a comment |
I have problems with sklearn MLPClassifier fit and I receive this error:
this is my dataset:
x y z
0 -35.997271 -16.594561 4.142350
1 -1.587584 -6.526561 0.212667
2 -15.775675 -30.170914 0.370804
3 -22.165420 -0.892974 0.161097
4 -13.913515 -16.396032 9.223847
I have splited the X and y train and test data:
x = np.array(df.drop(['z'],1))
y = np.array(df['z'])
x = preprocessing.scale(x)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(x,y, test_size=0.2)
and finally run the mlpclassifier and fit function:
mlp = MLPClassifier(hidden_layer_sizes=(13,13,13), max_iter=500)
mlp.fit(X_train, y_train)
but I received this error:
Unknown label type: (array([ 2.36, 9.88, 6.93, 1.27, 6.64, 4.7 , 4.72, 4.66, 10.45,
9.78, 3.97, 10.25, 0.45, 0.07, 7.79, 3.43, 0.71, 2.82,
7.67, 0.43, 4.48, 8.62, 0.56, 3.57, 6.85, 2.75, 3.37,
3.24, 2.41, 0.31, 5.51, 6.13, 9.48, 2.02, 0.13, 8.8 ,
0.37, 5.44, 5.05, 7.96, 4.56, 6.87, 2.93, 8.86, 10.2 ,
1.61, 4.26, 4.5 , 6.11, 10.05, 2.1 , 5.82, 2.69, 7.13,
1.47, 1.79, 1.86, 7.2 , 0.5 , 0.58, 0.16, 5.78, 6.02,
0.97, 7.05, 6.3 , 0.97, 5.04, 9.51, 2.88, 3.89, 8.82,
0.09, 8.37, 1.46, 9.22, 0.09, 4.8 , 0. , 6.16]),)
any ideas for solving this problem?
arrays scikit-learn valueerror
You are trying to predict continuous real-values with a classifier. Use a regressor instead.
– Vivek Kumar
Nov 22 '18 at 7:18
add a comment |
I have problems with sklearn MLPClassifier fit and I receive this error:
this is my dataset:
x y z
0 -35.997271 -16.594561 4.142350
1 -1.587584 -6.526561 0.212667
2 -15.775675 -30.170914 0.370804
3 -22.165420 -0.892974 0.161097
4 -13.913515 -16.396032 9.223847
I have splited the X and y train and test data:
x = np.array(df.drop(['z'],1))
y = np.array(df['z'])
x = preprocessing.scale(x)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(x,y, test_size=0.2)
and finally run the mlpclassifier and fit function:
mlp = MLPClassifier(hidden_layer_sizes=(13,13,13), max_iter=500)
mlp.fit(X_train, y_train)
but I received this error:
Unknown label type: (array([ 2.36, 9.88, 6.93, 1.27, 6.64, 4.7 , 4.72, 4.66, 10.45,
9.78, 3.97, 10.25, 0.45, 0.07, 7.79, 3.43, 0.71, 2.82,
7.67, 0.43, 4.48, 8.62, 0.56, 3.57, 6.85, 2.75, 3.37,
3.24, 2.41, 0.31, 5.51, 6.13, 9.48, 2.02, 0.13, 8.8 ,
0.37, 5.44, 5.05, 7.96, 4.56, 6.87, 2.93, 8.86, 10.2 ,
1.61, 4.26, 4.5 , 6.11, 10.05, 2.1 , 5.82, 2.69, 7.13,
1.47, 1.79, 1.86, 7.2 , 0.5 , 0.58, 0.16, 5.78, 6.02,
0.97, 7.05, 6.3 , 0.97, 5.04, 9.51, 2.88, 3.89, 8.82,
0.09, 8.37, 1.46, 9.22, 0.09, 4.8 , 0. , 6.16]),)
any ideas for solving this problem?
arrays scikit-learn valueerror
I have problems with sklearn MLPClassifier fit and I receive this error:
this is my dataset:
x y z
0 -35.997271 -16.594561 4.142350
1 -1.587584 -6.526561 0.212667
2 -15.775675 -30.170914 0.370804
3 -22.165420 -0.892974 0.161097
4 -13.913515 -16.396032 9.223847
I have splited the X and y train and test data:
x = np.array(df.drop(['z'],1))
y = np.array(df['z'])
x = preprocessing.scale(x)
X_train, X_test, y_train, y_test = cross_validation.train_test_split(x,y, test_size=0.2)
and finally run the mlpclassifier and fit function:
mlp = MLPClassifier(hidden_layer_sizes=(13,13,13), max_iter=500)
mlp.fit(X_train, y_train)
but I received this error:
Unknown label type: (array([ 2.36, 9.88, 6.93, 1.27, 6.64, 4.7 , 4.72, 4.66, 10.45,
9.78, 3.97, 10.25, 0.45, 0.07, 7.79, 3.43, 0.71, 2.82,
7.67, 0.43, 4.48, 8.62, 0.56, 3.57, 6.85, 2.75, 3.37,
3.24, 2.41, 0.31, 5.51, 6.13, 9.48, 2.02, 0.13, 8.8 ,
0.37, 5.44, 5.05, 7.96, 4.56, 6.87, 2.93, 8.86, 10.2 ,
1.61, 4.26, 4.5 , 6.11, 10.05, 2.1 , 5.82, 2.69, 7.13,
1.47, 1.79, 1.86, 7.2 , 0.5 , 0.58, 0.16, 5.78, 6.02,
0.97, 7.05, 6.3 , 0.97, 5.04, 9.51, 2.88, 3.89, 8.82,
0.09, 8.37, 1.46, 9.22, 0.09, 4.8 , 0. , 6.16]),)
any ideas for solving this problem?
arrays scikit-learn valueerror
arrays scikit-learn valueerror
asked Nov 21 '18 at 22:51
Morteza RahbarMorteza Rahbar
1
1
You are trying to predict continuous real-values with a classifier. Use a regressor instead.
– Vivek Kumar
Nov 22 '18 at 7:18
add a comment |
You are trying to predict continuous real-values with a classifier. Use a regressor instead.
– Vivek Kumar
Nov 22 '18 at 7:18
You are trying to predict continuous real-values with a classifier. Use a regressor instead.
– Vivek Kumar
Nov 22 '18 at 7:18
You are trying to predict continuous real-values with a classifier. Use a regressor instead.
– Vivek Kumar
Nov 22 '18 at 7:18
add a comment |
1 Answer
1
active
oldest
votes
You run MLPClassifier when your output seems to be a continuous variable. So either use MLPRegressor or replace outputs with class labels.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53421542%2funknown-label-type-array-in-sklearn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You run MLPClassifier when your output seems to be a continuous variable. So either use MLPRegressor or replace outputs with class labels.
add a comment |
You run MLPClassifier when your output seems to be a continuous variable. So either use MLPRegressor or replace outputs with class labels.
add a comment |
You run MLPClassifier when your output seems to be a continuous variable. So either use MLPRegressor or replace outputs with class labels.
You run MLPClassifier when your output seems to be a continuous variable. So either use MLPRegressor or replace outputs with class labels.
answered Nov 22 '18 at 5:49
avchauzovavchauzov
69437
69437
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53421542%2funknown-label-type-array-in-sklearn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You are trying to predict continuous real-values with a classifier. Use a regressor instead.
– Vivek Kumar
Nov 22 '18 at 7:18