Subset of $ell^2$ with distance property
$begingroup$
I'd been trying the following problem:
Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.
My ideas always end in points with distance at most $sqrt{2}$.
I need hints, please.
functional-analysis hilbert-spaces lp-spaces
$endgroup$
add a comment |
$begingroup$
I'd been trying the following problem:
Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.
My ideas always end in points with distance at most $sqrt{2}$.
I need hints, please.
functional-analysis hilbert-spaces lp-spaces
$endgroup$
$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40
$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40
$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47
$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52
$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04
add a comment |
$begingroup$
I'd been trying the following problem:
Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.
My ideas always end in points with distance at most $sqrt{2}$.
I need hints, please.
functional-analysis hilbert-spaces lp-spaces
$endgroup$
I'd been trying the following problem:
Prove that exists an infinite set $Asubset B(0,1)$ such that $|x-y|_2>sqrt{2}$ for all $x,y in A$.
My ideas always end in points with distance at most $sqrt{2}$.
I need hints, please.
functional-analysis hilbert-spaces lp-spaces
functional-analysis hilbert-spaces lp-spaces
edited Dec 5 '18 at 22:43
Xander Henderson
14.2k103554
14.2k103554
asked Dec 5 '18 at 20:36
Ángela FloresÁngela Flores
26518
26518
$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40
$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40
$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47
$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52
$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04
add a comment |
$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40
$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40
$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47
$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52
$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04
$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40
$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40
$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40
$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40
$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47
$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47
$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52
$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52
$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04
$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
$$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
$$||x-y||^2=2(1-langle x,yrangle).$$
So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
$$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}
Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
$$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027616%2fsubset-of-ell2-with-distance-property%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
$$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
$$||x-y||^2=2(1-langle x,yrangle).$$
So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
$$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}
Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
$$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}
$endgroup$
add a comment |
$begingroup$
Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
$$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
$$||x-y||^2=2(1-langle x,yrangle).$$
So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
$$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}
Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
$$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}
$endgroup$
add a comment |
$begingroup$
Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
$$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
$$||x-y||^2=2(1-langle x,yrangle).$$
So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
$$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}
Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
$$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}
$endgroup$
Recall that $ell^2$ is a Hilbert space with the natural inner product. Note that:
$$||x-y||^2=||x||^2+||y||^2-2langle x,yrangle,$$
in particular, if $x,yin S$ ($S$ the set of points with norm equal to $1$)
$$||x-y||^2=2(1-langle x,yrangle).$$
So it is enough to find an infinite family $B$ in $ell^2$ such that their inner product is $langle x,yrangle<0$ for all $x,yin B$, $xneq y$. Since you can consider
$$A=leftlbrace x/||x||;:;xin B, xneq 0rightrbrace,$$
and we have for $x/||x||$, $y/||y||$, $x,yin Bsetminus{0}$ the following
begin{align} ||x-y||^2 & = 2left( 1- frac{1}{||x||cdot||y||}langle x,yrangleright) \ & > 2.end{align}
Let $f:mathbb{N}tomathbb{N}:nmapsto n!$. Clearly $f(n)^2-nf(n-1)^2>0$. Now, let $(e_n)_n$ the standard basis of $ell^2$, and we define
$$u_n=f(n)e_n-sum_{k=1}^{n-1}f(k)e_k.$$
The set $B$ will be the set of the $u_n$'s. Let's check that for every pair of distinct natural numbers $n,m$ it is satisfied that $langle u_n,u_mrangle<0$. In fact
begin{align}langle u_n,u_mrangle & = leftlangle f(n)e_n-sum_{k=1}^{n-1}f(k)e_k,f(m)e_n-sum_{j=1}^{m-1}f(j)e_jrightrangle \ & = leftlangle f(n)e_n, f(m)e_mrightrangle-leftlangle f(n)e_n,sum_{j=1}^{m-1}f(j)e_jrightrangle \ & + leftlanglesum_{k=1}^{n-1}f(k)e_k,sum_{j=1}^{m-1}f(j)e_jrightrangle-leftlangle sum_{k=1}^{n-1}f(k)e_k, f(m)e_mrightrangle \ & = sum_{k=1}^{n-1}sum_{j=1}^{m-1}f(k)f(j)langle e_k,e_jrangle-f(m)^2 \ & = sum_{j=1}^{m-1}f(k)^2-f(m)^2 \ &leq mf(m-1)-f(m)^2 \ & < 0.end{align}
answered Dec 5 '18 at 23:24
José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda
825110
825110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027616%2fsubset-of-ell2-with-distance-property%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is there something missing in the question? If $A$ contains only two points $(1,0,0, ldots)$ and $(-1, 0, 0, ldots)$, does this not work?
$endgroup$
– angryavian
Dec 5 '18 at 20:40
$begingroup$
My mistake, A must be infinite.
$endgroup$
– Ángela Flores
Dec 5 '18 at 20:40
$begingroup$
@AlexR. $l^2$ refers to the space of sequences $(a_1, a_2, ldots)$ such that $sum_n a_n^2 < infty$.
$endgroup$
– angryavian
Dec 5 '18 at 20:47
$begingroup$
Nitpick: You might want to add $x ne y$ in the formulation of your question. Otherwise, it is not possible (obviously).
$endgroup$
– gerw
Dec 6 '18 at 7:52
$begingroup$
An interesting spinoff: How large can $$inf_{x,y in A, x ne y} |x-y|$$ be? Can this be larger than $sqrt{2}$?
$endgroup$
– gerw
Dec 6 '18 at 8:04